Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay
Tài liệu tham khảo
O’Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol Microbiol, 28, 449, 10.1046/j.1365-2958.1998.00797.x
Christensen, 1985, Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices, J Clin Microbiol, 22, 996, 10.1128/JCM.22.6.996-1006.1985
Pitts, 2003, A microtiter-plate screening method for biofilm disinfection and removal, J Microbiol Methods, 54, 269, 10.1016/S0167-7012(03)00034-4
O’Toole, 1999, Genetic approaches to study of biofilms, Methods Enzymol, 310, 91, 10.1016/S0076-6879(99)10008-9
Jakobsen, 2012, Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing, Antimicrob Agents Chemother, 56, 2314, 10.1128/AAC.05919-11
Das, 1998, Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces, J Appl Microbiol, 84, 852, 10.1046/j.1365-2672.1998.00422.x
Ceri, 1999, The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, J Clin Microbiol, 37, 1771, 10.1128/JCM.37.6.1771-1776.1999
Kragh, 2018, The inoculation method could impact the outcome of microbiological experiments, Appl Environ Microbiol, 84, 10.1128/AEM.02264-17
Skogman, 2012, Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms, J Antibiot (Tokyo), 65, 453, 10.1038/ja.2012.49
Bordeleau, 2018
Azeredo, 2016, Critical review on biofilm methods, Crit Rev Microbiol, 1
McBain, 2009, Chapter 4 in vitro biofilm models, vol 69, 99
Sternberg, 1999, Distribution of bacterial growth activity in flow-chamber biofilms, Appl Environ Microbiol, 65, 4108, 10.1128/AEM.65.9.4108-4117.1999
Kragh, 2016, Role of multicellular aggregates in biofilm formation, mBio, 7, 10.1128/mBio.00237-16
Shrout, 2006, The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional, Mol Microbiol, 62, 1264, 10.1111/j.1365-2958.2006.05421.x
Barken, 2008, Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms, Environ Microbiol, 10, 2331, 10.1111/j.1462-2920.2008.01658.x
Crusz, 2012, Bursting the bubble on bacterial biofilms: a flow cell methodology, Biofouling, 28, 835, 10.1080/08927014.2012.716044
Pamp, 2009, Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy, Cytometry A, 75, 90, 10.1002/cyto.a.20685
O’Toole, 2011, Microtiter dish biofilm formation assay, J Vis Exp, 47
Tolker-Nielsen, 2011, Growing and analyzing biofilms in flow chambers, Curr Protoc Microbiol, 10.1002/9780471729259.mc01b02s21
Melaugh
Kragh, 2016, Role of multicellular aggregates in biofilm formation, mBio, 7, 10.1128/mBio.00237-16
Grand, 2011, Possible overestimation of surface disinfection efficiency by assessment methods based on liquid sampling procedures as demonstrated by in situ quantification of spore viability, Appl Environ Microbiol, 77, 6208, 10.1128/AEM.00649-11
Harmsen, 2010, An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal, FEMS Immunol Med Microbiol, 59, 253, 10.1111/j.1574-695X.2010.00690.x
Stepanović, 2007, Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci, APMIS, 115, 891, 10.1111/j.1600-0463.2007.apm_630.x
Kragh, 2017, The inoculation method could impact the outcome of microbiological experiments, vol 84
Müller, 2011, Potential of shock waves to remove calculus and biofilm, Clin Oral Investig, 15, 959, 10.1007/s00784-010-0462-2
Edmonds, 2009, Surface sampling of spores in dry-deposition aerosols, Appl Environ Microbiol, 75, 39, 10.1128/AEM.01563-08
Walters, 2003, Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin, Antimicrob Agents Chemother, 47, 317, 10.1128/AAC.47.1.317-323.2003
Yang, 2006, Binding of aminoglycosidic antibiotics to the oligonucleotide A-site model and 30S ribosomal subunit: Poisson−Boltzmann model, thermal denaturation, and fluorescence studies, J Med Chem, 49, 5478, 10.1021/jm060288o
Alhede, 2011, Phenotypes of non-attached pseudomonas aeruginosa aggregates resemble surface attached biofilm, PLoS One, 6, 10.1371/journal.pone.0027943
Pamp, 2008, Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes, Mol Microbiol, 68, 223, 10.1111/j.1365-2958.2008.06152.x
Rosenberg, 2019, Propidium iodide staining underestimates viability of adherent bacterial cells, Sci Rep, 9, 6483, 10.1038/s41598-019-42906-3
Mah, 2001, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol, 9, 34, 10.1016/S0966-842X(00)01913-2
Rosenberg, 2019, Propidium iodide staining underestimates viability of adherent bacterial cells, Sci Rep, 9, 6483, 10.1038/s41598-019-42906-3
Bjarnsholt, 2005, Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent, Microbiology, 151, 373, 10.1099/mic.0.27463-0
Ahn J, Sanz-Moreno V, Marshalì CJ. The metastasis gene NEDD9 product acts through integrin b3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J Cell Sci. 125:1814-1826. doi:10.1242/jcs.101444