Comparative analysis of the effect of post-annealing on CeO2 and DC Magnetron Sputtered WO3/ CeO2 nanorods thin films for smart windows
Tài liệu tham khảo
Gupta, 2021, A review on the prominence of porosity in tungsten oxide thin films for electrochromism, Ionics (Kiel), 27, 2307, 10.1007/s11581-021-04035-8
Gutpa, 2022, Materials science in semiconductor processing PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO 3) thin films : a review, Mater. Sci. Semicond. Process., 143, 10.1016/j.mssp.2022.106534
Guo, 2023, Recent progress in improving strategies of metal oxide-based electrochromic smart window Green Energy and Resources Recent progress in improving strategies of metal oxide-based electrochromic smart window, Green Energy Resour., 1, 10.1016/j.gerr.2023.100007
Ashok Reddy, 2022, Thickness dependent tungsten trioxide thin films deposited using DC magnetron sputtering for electrochromic applications, Mater. Today Proc.
Madhavi, 2014, Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films, Phys. B Condens. Matter., 454, 141, 10.1016/j.physb.2014.07.029
Granqvist, 2007, Transparent conductors as solar energy materials: a panoramic review, Sol. Energy Mater. Sol. Cells., 91, 1529, 10.1016/j.solmat.2007.04.031
Khan, 2018, Physical properties of nanostructured CeO2 thin films grown by SILAR method, 1953, 1
Naveen Kumar, 2020, On the bonding and electrochemical performance of sputter deposited WO3 thin films, 872
Kumar, 2022, Sputter deposited tungsten oxide thin films and nanopillars : electrochromic perspective, Mater. Chem. Phys., 278
Gupta, 2022, Optimization of deposition rate for E-beam fabricated tungsten oxide thin films towards profound electrochromic applications, Appl. Phys. A Mater. Sci. Process., 128, 1, 10.1007/s00339-022-05609-7
GV, 2023, Materials today : proceedings comparison study of WO 3 thin film and nanorods for smart window applications, Mater. Today Proc
Gutpa, 2022, Optimization of GLAD angle for e-beam-fabricated tungsten oxide (WO3) thin films towards novel electrochromic behavior, J. Electron. Mater.
Naveen Kumar, 2022, On ion transport during the electrochemical reaction on plane and GLAD deposited WO3 thin films, Mater. Today Proc., 59, 275, 10.1016/j.matpr.2021.11.113
Naveen Kumar, 2021, Effect of annealing and oxygen partial pressure on the RF sputtered WO3 thin films for electrochromic applications, Mater. Today Proc.
Kumar, 2023, Optical and electrochromic properties of DC magnetron sputter deposited tungsten oxide thin films at different electrolyte concentrations and vertex potentials for smart window applications, J. Mater. Sci. Mater. Electron., 789
Bauersfeld, M., Neumaier, P., Wöllenstein, J. Nanoporous tungsten trioxide grown by electrochemical anodization of tungsten for gas sensing applications, 47 (2012) 204–207. doi:10.1016/j.proeng.2012.09.119.
Niklasson, G.A., Granqvist, C.G. Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide, and devices based on these, (2007) 127–156. doi:10.1039/b612174h.
Madhavi, 2021, Fabrication of porous 1D WO3 NRs and WO3/BiVO4 hetero junction photoanode for efficient photoelectrochemical water splitting, Mater. Chem. Phys., 274, 10.1016/j.matchemphys.2021.125095
Waghmode, 2019, Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation, SN Appl. Sci., 1, 10.1007/s42452-019-0337-3
Sivakumar, 2009, Molybdenum oxide (MoO3) thin film based electrochromic cell characterisation in 0.1M LiClO4.PC electrolyte, Surf. Eng., 25, 548, 10.1179/174329408X282523
Cheng, 2006, V2O5 nanowires as a functional material for electrochromic device, Sol. Energy Mater. Sol. Cells., 90, 1156, 10.1016/j.solmat.2005.07.006
Dong, 2015, Electrochromic properties of NiO x :H films deposited by DC magnetron sputtering for ITO/NiO x :H/ZrO 2 /WO 3 /ITO device, Appl. Surf. Sci., 357, 799, 10.1016/j.apsusc.2015.09.056
Naveen Kumar, 2022, Glancing angle sputter deposited tungsten trioxide (WO3) thin films for electrochromic applications, Appl. Phys. A Mater. Sci. Process., 128, 1, 10.1007/s00339-022-06124-5
Ou, 2012, The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties, Nanoscale, 4, 5980, 10.1039/c2nr31203d
Wang, 2003, WO3 sol-gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance, Adv. Mater., 15, 1285, 10.1002/adma.200304989
Zhang, 2011, Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance, J. Mater. Chem., 21, 5492, 10.1039/c0jm04361c
Dhas, 2017, Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films, Opt. Mater. (Amst)., 72, 717, 10.1016/j.optmat.2017.07.026
Lemos, 2021, Molybdenum doping effect on sol-gel Nb2O5:Li+ thin films: Investigation of structural, optical and electrochromic properties, Mater. Sci. Semicond. Process., 134, 1, 10.1016/j.mssp.2021.105995
Na, 2005, Surface morphology and sensing property of NiO-WO3 thin films prepared by thermal evaporation, Sensors, 5, 519, 10.3390/s5120519
Avellaneda, O., Bulho, L.O.S. The CeO 2 – TiO 2 – ZrO 2 sol – gel film : a counter-electrode for electrochromic devices, 471 (2005) 100–104. doi:10.1016/j.tsf.2004.04.039.
Cazzanelli, 2003, Sputtering deposition and characterization of Ru-Doped WO3thin films for electrochromic applications, Ionics (Kiel), 9, 95, 10.1007/BF02376544
Kilner, 1982, A study of oxygen ion conductivity in doped non-stoichiometric oxides, Solid State Ionics, 6, 237, 10.1016/0167-2738(82)90045-5
Madhavi, 2014, Effect of molybdenum doping on the electrochromic properties of tungsten oxide thin films by RF magnetron sputtering, Ionics (Kiel), 20, 1737, 10.1007/s11581-014-1073-8
Muthu Karuppasamy, 2008, Results on the electrochromic and photocatalytic properties of vanadium doped tungsten oxide thin films prepared by reactive dc magnetron sputtering technique, J. Phys. D. Appl. Phys., 41, 10.1088/0022-3727/41/3/035302
Ozer, 1999, Electrochromic performance of sol-gel deposited WO 3 ±V 2 O 5 ®lms, Thin Solid Films, 349, 2, 10.1016/S0040-6090(99)00144-3
Cai, 2013, Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays, Sol. Energy Mater. Sol. Cells., 117, 231, 10.1016/j.solmat.2013.05.049
Kalidindi, 2011, Crystal structure, phase, and electrical conductivity of nanocrystalline W 0.95Ti 0.05O 3 thin films, ACS Appl. Mater. Interfaces., 3, 863, 10.1021/am101209d
Zayim, 2005, Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films, Sol. Energy Mater. Sol. Cells., 87, 695, 10.1016/j.solmat.2004.06.017
Patil, 2005, Electrochromic properties of spray deposited TiO 2 -doped WO 3 thin films, Appl. Surf. Sci., 250, 117, 10.1016/j.apsusc.2004.12.042
Bathe, S.R., Patil, P.S. Electrochemical behavior of TiO2 nanoparticle doped WO3 thin films, 2014 (2014) 3–8.
Xu, 2013, Structural and optical properties of (Al, K)-co-doped ZnO thin films deposited by a sol-gel technique, Mater. Sci. Semicond. Process., 16, 732, 10.1016/j.mssp.2012.12.016
Ramkumar, 2016, Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films, J. Mater. Sci. Mater. Electron., 27, 1847, 10.1007/s10854-015-3963-6
De León, 2011, Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping, Electrochim. Acta., 56, 2599, 10.1016/j.electacta.2010.11.038
Xu, 2009, Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity, Colloids Surfaces A Physicochem. Eng. Asp., 334, 107, 10.1016/j.colsurfa.2008.10.017
Chen, 2011, The photoluminescence, drug delivery and imaging properties of multifunctional Eu 3+/Gd 3+ dual-doped hydroxyapatite nanorods, Biomaterials, 32, 9031, 10.1016/j.biomaterials.2011.08.032
Wang, 2004, Synthesis and photoluminescence of Eu3+-doped (Y,Gd)BO 3 phosphors by a mild hydrothermal process, J. Cryst. Growth., 268, 568, 10.1016/j.jcrysgro.2004.04.093
SONG, 2010, Microwave electromagnetic and absorbing properties of Dy3+ doped MnZn ferrites, J. Rare Earths., 28, 451, 10.1016/S1002-0721(09)60132-0
Huang, 2011, Electromagnetic and microwave absorbing properties of W-type barium ferrite doped with Gd3+, Rare Met., 30, 44, 10.1007/s12598-011-0194-8
Liu, 2015, Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping, J. Phys. Chem. C., 119, 14834, 10.1021/acs.jpcc.5b00966
Zheng, 1993
Masetti, E., Varsano, F., Decker, F. Sputter-deposited cerium vanadium mixed oxide as counter- electrode for electrochromic devices, 44 (1999) 3117–3119.
Avellaneda, O., Vieira, D.F., Al-kahlout, A., Leite, E.R., Pawlicka, A., Aegerter, M.A. Solid-state electrochromic devices with Nb 2 O 5 : Mo thin film and gelatin-based electrolyte, 53 (2007) 1648–1654. doi:10.1016/j.electacta.2007.05.065.
Pawlicka, A., Sentanin, F., Firmino, A., Grote, J.G., Rau, I. Ionically conducting DNA-based membranes for eletrochromic devices, 161 (2011) 2329–2334. doi:10.1016/j.synthmet.2011.08.043.
Dalavi, 2020, Energy efficient electrochromic smart windows based on highly stable CeO2-V2O5 optically passive counter electrode, Mater, Today Proc., 43, 2702
Barreca, 2006, 8639
Santamaria, P.B.Æ.M., Di Quarto, Æ.F. From ceria nanotubes to nanowires through electrogeneration of base, (2009) 2073–2081. doi:10.1007/s10800-009-9866-6.
Ishizaki, 2011, Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution, Langmuir, 27, 4780, 10.1021/la2002783
Guan, 2010, Template-free synthesis of sphere, rod and prism morphologies of CeO 2 oxidation catalysts, Catal. Letters., 137, 28, 10.1007/s10562-010-0349-5
Ji, 2012, Designed synthesis of CeO 2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials, ACS Nano, 6, 5366, 10.1021/nn3012114
Tang, 2005, A surfactant-free route to single-crystalline CeO2 nanowires, Chem. Commun., 3565, 10.1039/b500708a
Basu, 2010, Low-temperature and ambient-pressure synthesis and shape evolution of nanocrystalline pure, La-doped and Gd-doped CeO 2, Appl. Surf. Sci., 256, 3772, 10.1016/j.apsusc.2010.01.024
Vantomme, 2005, Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods, Langmuir, 21, 1132, 10.1021/la047751p
Wu, 2004, An improved sol-gel template synthetic route to large-scale CeO2 nanowires, Mater. Res. Bull., 39, 1023, 10.1016/j.materresbull.2004.03.006
Wen-Cheun Au, 2020, Post-annealing effect on the electrochromic properties of WO3 films, Opt. Mater. (Amst)., 108, 10.1016/j.optmat.2020.110426
Mukherjee, 2016, Improved electrochromic performance in sprayed WO3 thin films upon Sb doping, J. Alloys Compd., 660, 336, 10.1016/j.jallcom.2015.11.138
Chananonnawathorn, 2012, Electrochromic property dependent on oxygen gas flow rate and films thickness of sputtered WO3 films, Procedia Eng., 32, 752, 10.1016/j.proeng.2012.02.008
Cai, 2014, Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance, Sol. Energy Mater. Sol. Cells., 124, 103, 10.1016/j.solmat.2014.01.042
Siva Prakash, 2020, Impact of substrate temperature on the properties of rare-earth cerium oxide thin films and electrical performance of p-Si/n-CeO2 junction diode, J. Inorg. Organomet. Polym. Mater., 30, 5193, 10.1007/s10904-020-01667-7
Cho, 2015, Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance, Appl. Surf. Sci., 340, 96, 10.1016/j.apsusc.2015.02.138
Balboni, 2021, Influence of weathering and temperature on the electrochemical and microscopical characteristics of CeO2 and CeO2:V2O5 sol-gel thin films, Mater. Res. Bull., 142, 10.1016/j.materresbull.2021.111432
Channei, 2021, Synthesis and characterization of WO3/CeO2heterostructured nanoparticles for photodegradation of indigo carmine dye, ACS Omega, 6, 19771, 10.1021/acsomega.1c02453
Saini, 2020, VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications, Ceram. Int., 46, 986, 10.1016/j.ceramint.2019.09.062
Babu, 2020, Synthesis and electrochromic properties of nanocrystalline WO3 thin films, Phys. B Condens. Matter., 584, 10.1016/j.physb.2020.412068
