Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption

Geochimica et Cosmochimica Acta - Tập 70 - Trang 4095-4104 - 2006
Andrew S. Madden1, Michael F. Hochella1, Todd P. Luxton2
1NanoGeoscience and Technology Laboratory, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
2Department of Crop, Soil, and Environmental Science, Virginia Tech, Blacksburg, VA 24061, USA

Tài liệu tham khảo

Alcacio, 2001, Molecular scale characteristics of Cu(II) bonding in goethite-humate complexes, Geochim. Cosmochim. Acta, 65, 1355, 10.1016/S0016-7037(01)00546-4 Baes, 1986, Hydrol. Cat Becker, 1996, The electronic structure of hematite {001} surfaces: Applications to the interpretation of STM images and heterogeneous surface reactions, Am. Mineral., 81, 1301, 10.2138/am-1996-11-1201 Becker, 2001, Step edges on galena (100): probing the basis for defect driven surface reactivity at the atomic scale, Am. Mineral., 86, 862, 10.2138/am-2001-0709 Bergermayer, 2004, Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001), Phys. Rev. B, 69, 1, 10.1103/PhysRevB.69.195409 Bigham, 2002, Iron Oxides, vol. 7 Borda, 2003, A mechanism for the production of hydroxyl radical at surface defect sites on pyrite, Geochim. Cosmochim. Acta, 67, 935, 10.1016/S0016-7037(02)01222-X Brown, 2001, Sorption of trace elements on mineral surfaces: modern perspectives from spectroscopic studies, and comments on sorption in the marine environment, Int. Geol. Rev., 43, 963, 10.1080/00206810109465060 Buerge-Weirich, 2002, Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands, Environ. Sci. Tech., 36, 328, 10.1021/es010892i Cheah, 2000, XAFS study of Cu model compounds and Cu2+ sorption products on amorphous SiO2, γ-Al2O3, and anatase, Am. Mineral., 85, 118, 10.2138/am-2000-0113 Chen, 2002, Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations, J. Phys. Chem. B, 106, 8539, 10.1021/jp025544x Chen, 1997, XAFS studies of surface structures of TiO2 nanoparticles and photocatalytic reduction of metal ions, J. Phys. Chem. B, 101, 10688, 10.1021/jp971930g Chiesa, 2005, Single electron traps at the surface of polycrystalline MgO: assignment of the main trapping sites, J. Phys. Chem. B., 10.1021/jp044783c Christl, 1999, Competitive sorption of copper and lead at the oxide–water interface: implications for surface site density, Geochim. Cosmochim. Acta, 63, 2929, 10.1016/S0016-7037(99)00266-5 Clementz, 1973, Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study, J. Phys. Chem., 77, 196, 10.1021/j100621a010 Condon, 1998, Scanning tunnelling microscopy studies of [alpha]-Fe2O3, Surf. Sci., 397, 278, 10.1016/S0039-6028(97)00744-9 Cornell, 1996 Criscenti, 1999, The role of electrolyte anions (ClO4−, NO3−, and Cl−) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions, Am. J. Sci., 299, 828, 10.2475/ajs.299.10.828 Dhungana, 2005, Coordination chemistry and redox processes in siderophore-mediated iron transport, Geomicrobiol. J., 22, 87, 10.1080/01490450590945870 Eggleston, 1999, The surface structure of α-Fe2O3 (001) by scanning tunneling microscopy: implications for interfacial electron transfer reactions, Am. Mineral., 84, 1061, 10.2138/am-1999-7-808 Eggleston, 2004, Adatom Fe(III) on the hematite surface: observation of a key reactive surface species, Geochem. Trans., 5, 33, 10.1186/1467-4866-5-33 Eggleston, 2003, The structure of hematite (001) surfaces in aqueous media: scanning tunneling and resonant tunneling calculations of coexisting O and Fe terminations, Geochim. Cosmochim. Acta, 67, 985, 10.1016/S0016-7037(02)01200-0 Elsetinow, 2003, Characterization of the structure and the surface reactivity of a marcasite thin film, Geochim. Cosmochim. Acta, 67, 807, 10.1016/S0016-7037(02)00923-7 Farquhar, 1996, Adsorption of Cu(II) on the (0001) plane of mica: a REFLEXAFS and XPS study, J. Coll. Int. Sci., 177, 561, 10.1006/jcis.1996.0070 Fernandez-Garcia, 2004, Nanostructured oxides in chemistry: characterization and properties, Chem. Rev., 104, 4063, 10.1021/cr030032f Garcell, 1998, Interfacial and rheological characteristics of maghemite aqueous suspensions, J. Coll. Int. Sci., 205, 470, 10.1006/jcis.1998.5654 Gilbert, 2005, Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems, Rev. Mineral. Geochem., 59, 109, 10.2138/rmg.2005.59.6 Grossl, 1994, Rapid kinetics of Cu(II) adsorption/desorption on goethite, Environ. Sci. Tech., 28, 1422, 10.1021/es00057a008 Henderson, 1998, Interaction of water with the (1×1) and (2×1) surfaces of hematite (012), Surf. Sci., 417, 66, 10.1016/S0039-6028(98)00662-1 Henrich, 1996 Hochella, 1990, Atomic structure, microtopography, composition, and reactivity of mineral surfaces, Rev. Mineral, 23, 87 Hochella, 2002, Nanoscience and technology: The next revolution in the Earth sciences, Earth Planet. Sci. Lett., 203, 593, 10.1016/S0012-821X(02)00818-X Hochella, 2005, Environmentally important, poorly crystalline Fe/Mn hydrous oxides: ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex, Am. Mineral., 90, 718, 10.2138/am.2005.1591 Hochella, 1999, A TEM study of samples from acid mine drainage systems: metal–mineral association with implications for transport, Geochim. Cosmochim. Acta, 63, 3395, 10.1016/S0016-7037(99)00260-4 Hochella, 2005, Direct observation of heavy metal–mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability, Geochim. Cosmochim. Acta, 69, 1651, 10.1016/j.gca.2004.07.038 James, 1981, Copper reactions with inorganic components of soils including uptake by oxide and silicate minerals, 380 James, 1972, Adsorption of hydrolyzable metal ions at the oxide–water interface III. A thermodynamic model of adsorption, J. Coll. Int. Sci., 40, 65, 10.1016/0021-9797(72)90174-9 Jarlbring, 2005, Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions, J. Coll. Int. Sci., 285, 212, 10.1016/j.jcis.2004.11.005 Jung, 1998, Comparitive study of Cu2+ adsorption on goethite, hematite, and kaolinite: mechanistic modeling approach, Bull. Korean Chem. Soc., 19, 324 Junta, 1994, Manganese(II) oxidation at mineral surfaces: a microscopic and spectroscopic study, Geochim. Cosmochim. Acta, 58, 4985, 10.1016/0016-7037(94)90226-7 Junta-Rosso, 1996, The chemistry of hematite {001} surfaces, Geochim. Cosmochim. Acta, 60, 305, 10.1016/0016-7037(95)00382-7 Junta-Rosso, 1997, Linking microscopic and macroscopic data for heterogeneous reactions illustrated by the oxidation of manganese(II) at mineral surfaces, Geochim. Cosmochim. Acta, 61, 149, 10.1016/S0016-7037(96)00329-8 Kabata-Pendias, 1992 Karthikeyan, 1999, Surface complexation modeling of copper sorption by hydrous oxides of iron and aluminum, J. Coll. Int. Sci., 220, 88, 10.1006/jcis.1999.6507 Karthikeyan, 1999, Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum, J. Coll. Int. Sci., 209, 72, 10.1006/jcis.1998.5893 Kim, 1979, Kintics and mechanisms of the oxidation of carbon monoxide on α-Fe2O3, J. Phys. Chem., 83, 1286, 10.1021/j100473a010 Knozinger, 2000, Catalysis on oxide surfaces, Science, 287, 1407, 10.1126/science.287.5457.1407 Liu, 1998, Reaction of water with MgO(100) surfaces. Part II: synchrotron photoemission studies of defective surfaces, Surf. Sci., 412–413, 315, 10.1016/S0039-6028(98)00445-2 Liu, 1998, Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces: synchrotron X-ray photoemission studies and thermodynamic calculations, Surf. Sci., 417, 53, 10.1016/S0039-6028(98)00661-X Madden, 2005, A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles, Geochim. Cosmochim. Acta, 69, 389, 10.1016/j.gca.2004.06.035 McBride, 1981, Forms and distribution of copper in solid and solution phases of soil, 380 McBride, 1989, Reactions controlling heavy metal solubility in soils, Adv. Soil Sci., 10, 1, 10.1007/978-1-4613-8847-0_1 McBride, 1984, Cu2+ interaction with microcrystalline gibbsite. Evidence for oriented chemisorbed copper ions, Clays Clay Min., 32, 12, 10.1346/CCMN.1984.0320102 Padmanabham, 1983, Adsorption-desorption behavior of copper(II) at the goethite-solution interface, Australian J. Soil Res., 21, 309, 10.1071/SR9830309 Palmqvist, 1997, In situ voltammetric determinations of metal ions in goethite suspensions: single metal ion systems, J. Coll. Int. Sci., 196, 254, 10.1006/jcis.1997.5189 Parkman, 1999, Reactions of copper and cadmium ions in aqueous solution with goehite, lepidocrocite, mackinawite, and pyrite, Am. Mineral., 84, 407, 10.2138/am-1999-0326 Peacock, 2004, Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy, Geochim. Cosmochim. Acta, 68, 2623, 10.1016/j.gca.2003.11.030 Pecharroman, 1995, The infrared dielectric properties of maghemite, gamma-Fe2O3, from reflectance measurement on pressed powders, Phys. Chem. Min., 22, 21, 10.1007/BF00202677 Rajh, 2002, Surface restructuring of nanoparticles: an efficient route for ligand–metal oxide crosstalk, J. Phys. Chem. B, 106, 10543, 10.1021/jp021235v Rose, 1993, Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite and hematite: A control on metal mobilization from red beds into stratiform copper deposits, Econ. Geol., 88, 1226, 10.2113/gsecongeo.88.5.1226 Rosso, 2001, Structure and reactivity of semiconducting mineral surfaces: convergence of molecular modeling and experiment, Rev. Mineral. Geochem., 42, 199, 10.2138/rmg.2001.42.7 Rosso, 2000, Surface defects and self-diffusion on pyrite {100}: an ultra-high vacuum scanning tunneling microscopy and theoretical modeling study, Am. Mineral., 85, 1428, 10.2138/am-2000-1011 Rustad, 2005, The influence of edge sites on the development of surface charge on goethite nanoparticles: a molecular dynamics investigation, Geochim. Cosmochim. Acta, 69, 1405, 10.1016/j.gca.2004.08.030 Sadykov, 2000, Role of defect structure in structural sensitivity of the oxidation reactions catalyzed by dispersed transition metal oxides, J. Mol. Catal. A, 158, 361, 10.1016/S1381-1169(00)00105-9 Sahai, 1997, Solvation and electrostatic model for specific electrolyte adsorption, Geochim. Cosmochim. Acta, 61, 2827, 10.1016/S0016-7037(97)00127-0 Samson, 1998, Active sites and the non-steady-state dissolution of hematite, Environ. Sci. Tech., 32, 2871, 10.1021/es9803097 Samson, 2000, The depletion and regeneration of dissolution-active sites at the mineral–water interface: II. Regeneration of active sites on α-Fe2O3 at pH 3 and pH 6, Geochim. Cosmochim. Acta, 64, 3675, 10.1016/S0016-7037(00)00461-0 Scheinost, 2001, Kinetic controls on Cu and Pb sorption by ferrihydrite, Environ. Sci. Tech., 35, 1090, 10.1021/es000107m Schindler, 1987, The surface chemistry of oxides, hydroxides, and oxide minerals, 83 Schwertmann, 2000 Shaikhutdinov, 1999, Oxygen pressure dependence of the α-Fe2O3(0001) surface structure, Surf. Sci., 432, L627, 10.1016/S0039-6028(99)00643-3 Sparks, 2003 Sposito, 1989 Stirnman, 1996, The adsorption and desorption of water on single crystal Mg(100): the role of surface defects, J. Chem. Phys., 105, 1295, 10.1063/1.471993 Strawn, 2004, Copper sorption mechanisms on smectites, Clays Clay Min., 52, 321, 10.1346/CCMN.2004.0520307 Stumm, 1996 Subramaniam, 2001, Modeling kinetics of copper uptake by inorganic colloids under high surface coverage conditions, Coll. Surf. A, 191, 145, 10.1016/S0927-7757(01)00771-3 Sverjensky, 1996, Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water, Geochim. Cosmochim. Acta, 60, 3773, 10.1016/0016-7037(96)00207-4 Swallow, 1980, Sorption of copper and lead by hydrous ferric oxide, Environ. Sci. Tech., 14, 1326, 10.1021/es60171a003 Trainor, 2004, Structure and reactivity of the hydrated hematite (0001) surface, Surf. Sci., 573, 204, 10.1016/j.susc.2004.09.040 Venema, 1998, Instrinsic proton affinity of reactive surface groups of metal (hydr)oxides: application to iron (hydr)oxdies, J. Coll. Int. Sci., 198, 282, 10.1006/jcis.1997.5245 Wang, 1998, The hematite (0001) surface: evidence for domains of distinct chemistry, Phys. Rev. Lett., 81, 1038, 10.1103/PhysRevLett.81.1038 Watanabe, 1986, The point of zero charge and the isoelectric point of γ-Fe2O3 and α-Fe2O3, Bull. Chem. Soc. Japan, 59, 2683, 10.1246/bcsj.59.2683 Watanabe, 1993, Specific acidities of the surface hydroxyl groups on maghemite, Bull. Chem. Soc. Japan, 66, 395, 10.1246/bcsj.66.395 Waychunas, 2001, Structure, aggregation, and characterization of nanomaterials, Rev. Mineral. Geochem., 44, 105, 10.2138/rmg.2001.44.04 Waychunas, 2005, Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms, J. Nanoparticle Res., 7, 409, 10.1007/s11051-005-6931-x Wehrli, B., 1990. Redox reactions of metal ions at mineral surfaces. In: Stumm, W. (Ed.), Aquatic Chemical Kinetics. pp. 311–336. Xia, 1997, Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy, Geochim. Cosmochim. Acta, 61, 2211, 10.1016/S0016-7037(97)00079-3 Zhang, 2003, Surface structure of α-Fe2O3 nanocrystal observed by O K-edge X-ray absorption spectroscopy, Nucl. Inst. Meth. Phys. Res. B, 199, 291, 10.1016/S0168-583X(02)01576-8 Zhang, 2004, Particle-size dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes, J. Phys. Chem. B, 108, 15077, 10.1021/jp037584m