Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption
Tài liệu tham khảo
Alcacio, 2001, Molecular scale characteristics of Cu(II) bonding in goethite-humate complexes, Geochim. Cosmochim. Acta, 65, 1355, 10.1016/S0016-7037(01)00546-4
Baes, 1986, Hydrol. Cat
Becker, 1996, The electronic structure of hematite {001} surfaces: Applications to the interpretation of STM images and heterogeneous surface reactions, Am. Mineral., 81, 1301, 10.2138/am-1996-11-1201
Becker, 2001, Step edges on galena (100): probing the basis for defect driven surface reactivity at the atomic scale, Am. Mineral., 86, 862, 10.2138/am-2001-0709
Bergermayer, 2004, Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001), Phys. Rev. B, 69, 1, 10.1103/PhysRevB.69.195409
Bigham, 2002, Iron Oxides, vol. 7
Borda, 2003, A mechanism for the production of hydroxyl radical at surface defect sites on pyrite, Geochim. Cosmochim. Acta, 67, 935, 10.1016/S0016-7037(02)01222-X
Brown, 2001, Sorption of trace elements on mineral surfaces: modern perspectives from spectroscopic studies, and comments on sorption in the marine environment, Int. Geol. Rev., 43, 963, 10.1080/00206810109465060
Buerge-Weirich, 2002, Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands, Environ. Sci. Tech., 36, 328, 10.1021/es010892i
Cheah, 2000, XAFS study of Cu model compounds and Cu2+ sorption products on amorphous SiO2, γ-Al2O3, and anatase, Am. Mineral., 85, 118, 10.2138/am-2000-0113
Chen, 2002, Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations, J. Phys. Chem. B, 106, 8539, 10.1021/jp025544x
Chen, 1997, XAFS studies of surface structures of TiO2 nanoparticles and photocatalytic reduction of metal ions, J. Phys. Chem. B, 101, 10688, 10.1021/jp971930g
Chiesa, 2005, Single electron traps at the surface of polycrystalline MgO: assignment of the main trapping sites, J. Phys. Chem. B., 10.1021/jp044783c
Christl, 1999, Competitive sorption of copper and lead at the oxide–water interface: implications for surface site density, Geochim. Cosmochim. Acta, 63, 2929, 10.1016/S0016-7037(99)00266-5
Clementz, 1973, Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study, J. Phys. Chem., 77, 196, 10.1021/j100621a010
Condon, 1998, Scanning tunnelling microscopy studies of [alpha]-Fe2O3, Surf. Sci., 397, 278, 10.1016/S0039-6028(97)00744-9
Cornell, 1996
Criscenti, 1999, The role of electrolyte anions (ClO4−, NO3−, and Cl−) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions, Am. J. Sci., 299, 828, 10.2475/ajs.299.10.828
Dhungana, 2005, Coordination chemistry and redox processes in siderophore-mediated iron transport, Geomicrobiol. J., 22, 87, 10.1080/01490450590945870
Eggleston, 1999, The surface structure of α-Fe2O3 (001) by scanning tunneling microscopy: implications for interfacial electron transfer reactions, Am. Mineral., 84, 1061, 10.2138/am-1999-7-808
Eggleston, 2004, Adatom Fe(III) on the hematite surface: observation of a key reactive surface species, Geochem. Trans., 5, 33, 10.1186/1467-4866-5-33
Eggleston, 2003, The structure of hematite (001) surfaces in aqueous media: scanning tunneling and resonant tunneling calculations of coexisting O and Fe terminations, Geochim. Cosmochim. Acta, 67, 985, 10.1016/S0016-7037(02)01200-0
Elsetinow, 2003, Characterization of the structure and the surface reactivity of a marcasite thin film, Geochim. Cosmochim. Acta, 67, 807, 10.1016/S0016-7037(02)00923-7
Farquhar, 1996, Adsorption of Cu(II) on the (0001) plane of mica: a REFLEXAFS and XPS study, J. Coll. Int. Sci., 177, 561, 10.1006/jcis.1996.0070
Fernandez-Garcia, 2004, Nanostructured oxides in chemistry: characterization and properties, Chem. Rev., 104, 4063, 10.1021/cr030032f
Garcell, 1998, Interfacial and rheological characteristics of maghemite aqueous suspensions, J. Coll. Int. Sci., 205, 470, 10.1006/jcis.1998.5654
Gilbert, 2005, Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems, Rev. Mineral. Geochem., 59, 109, 10.2138/rmg.2005.59.6
Grossl, 1994, Rapid kinetics of Cu(II) adsorption/desorption on goethite, Environ. Sci. Tech., 28, 1422, 10.1021/es00057a008
Henderson, 1998, Interaction of water with the (1×1) and (2×1) surfaces of hematite (012), Surf. Sci., 417, 66, 10.1016/S0039-6028(98)00662-1
Henrich, 1996
Hochella, 1990, Atomic structure, microtopography, composition, and reactivity of mineral surfaces, Rev. Mineral, 23, 87
Hochella, 2002, Nanoscience and technology: The next revolution in the Earth sciences, Earth Planet. Sci. Lett., 203, 593, 10.1016/S0012-821X(02)00818-X
Hochella, 2005, Environmentally important, poorly crystalline Fe/Mn hydrous oxides: ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex, Am. Mineral., 90, 718, 10.2138/am.2005.1591
Hochella, 1999, A TEM study of samples from acid mine drainage systems: metal–mineral association with implications for transport, Geochim. Cosmochim. Acta, 63, 3395, 10.1016/S0016-7037(99)00260-4
Hochella, 2005, Direct observation of heavy metal–mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability, Geochim. Cosmochim. Acta, 69, 1651, 10.1016/j.gca.2004.07.038
James, 1981, Copper reactions with inorganic components of soils including uptake by oxide and silicate minerals, 380
James, 1972, Adsorption of hydrolyzable metal ions at the oxide–water interface III. A thermodynamic model of adsorption, J. Coll. Int. Sci., 40, 65, 10.1016/0021-9797(72)90174-9
Jarlbring, 2005, Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions, J. Coll. Int. Sci., 285, 212, 10.1016/j.jcis.2004.11.005
Jung, 1998, Comparitive study of Cu2+ adsorption on goethite, hematite, and kaolinite: mechanistic modeling approach, Bull. Korean Chem. Soc., 19, 324
Junta, 1994, Manganese(II) oxidation at mineral surfaces: a microscopic and spectroscopic study, Geochim. Cosmochim. Acta, 58, 4985, 10.1016/0016-7037(94)90226-7
Junta-Rosso, 1996, The chemistry of hematite {001} surfaces, Geochim. Cosmochim. Acta, 60, 305, 10.1016/0016-7037(95)00382-7
Junta-Rosso, 1997, Linking microscopic and macroscopic data for heterogeneous reactions illustrated by the oxidation of manganese(II) at mineral surfaces, Geochim. Cosmochim. Acta, 61, 149, 10.1016/S0016-7037(96)00329-8
Kabata-Pendias, 1992
Karthikeyan, 1999, Surface complexation modeling of copper sorption by hydrous oxides of iron and aluminum, J. Coll. Int. Sci., 220, 88, 10.1006/jcis.1999.6507
Karthikeyan, 1999, Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum, J. Coll. Int. Sci., 209, 72, 10.1006/jcis.1998.5893
Kim, 1979, Kintics and mechanisms of the oxidation of carbon monoxide on α-Fe2O3, J. Phys. Chem., 83, 1286, 10.1021/j100473a010
Knozinger, 2000, Catalysis on oxide surfaces, Science, 287, 1407, 10.1126/science.287.5457.1407
Liu, 1998, Reaction of water with MgO(100) surfaces. Part II: synchrotron photoemission studies of defective surfaces, Surf. Sci., 412–413, 315, 10.1016/S0039-6028(98)00445-2
Liu, 1998, Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces: synchrotron X-ray photoemission studies and thermodynamic calculations, Surf. Sci., 417, 53, 10.1016/S0039-6028(98)00661-X
Madden, 2005, A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles, Geochim. Cosmochim. Acta, 69, 389, 10.1016/j.gca.2004.06.035
McBride, 1981, Forms and distribution of copper in solid and solution phases of soil, 380
McBride, 1989, Reactions controlling heavy metal solubility in soils, Adv. Soil Sci., 10, 1, 10.1007/978-1-4613-8847-0_1
McBride, 1984, Cu2+ interaction with microcrystalline gibbsite. Evidence for oriented chemisorbed copper ions, Clays Clay Min., 32, 12, 10.1346/CCMN.1984.0320102
Padmanabham, 1983, Adsorption-desorption behavior of copper(II) at the goethite-solution interface, Australian J. Soil Res., 21, 309, 10.1071/SR9830309
Palmqvist, 1997, In situ voltammetric determinations of metal ions in goethite suspensions: single metal ion systems, J. Coll. Int. Sci., 196, 254, 10.1006/jcis.1997.5189
Parkman, 1999, Reactions of copper and cadmium ions in aqueous solution with goehite, lepidocrocite, mackinawite, and pyrite, Am. Mineral., 84, 407, 10.2138/am-1999-0326
Peacock, 2004, Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy, Geochim. Cosmochim. Acta, 68, 2623, 10.1016/j.gca.2003.11.030
Pecharroman, 1995, The infrared dielectric properties of maghemite, gamma-Fe2O3, from reflectance measurement on pressed powders, Phys. Chem. Min., 22, 21, 10.1007/BF00202677
Rajh, 2002, Surface restructuring of nanoparticles: an efficient route for ligand–metal oxide crosstalk, J. Phys. Chem. B, 106, 10543, 10.1021/jp021235v
Rose, 1993, Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite and hematite: A control on metal mobilization from red beds into stratiform copper deposits, Econ. Geol., 88, 1226, 10.2113/gsecongeo.88.5.1226
Rosso, 2001, Structure and reactivity of semiconducting mineral surfaces: convergence of molecular modeling and experiment, Rev. Mineral. Geochem., 42, 199, 10.2138/rmg.2001.42.7
Rosso, 2000, Surface defects and self-diffusion on pyrite {100}: an ultra-high vacuum scanning tunneling microscopy and theoretical modeling study, Am. Mineral., 85, 1428, 10.2138/am-2000-1011
Rustad, 2005, The influence of edge sites on the development of surface charge on goethite nanoparticles: a molecular dynamics investigation, Geochim. Cosmochim. Acta, 69, 1405, 10.1016/j.gca.2004.08.030
Sadykov, 2000, Role of defect structure in structural sensitivity of the oxidation reactions catalyzed by dispersed transition metal oxides, J. Mol. Catal. A, 158, 361, 10.1016/S1381-1169(00)00105-9
Sahai, 1997, Solvation and electrostatic model for specific electrolyte adsorption, Geochim. Cosmochim. Acta, 61, 2827, 10.1016/S0016-7037(97)00127-0
Samson, 1998, Active sites and the non-steady-state dissolution of hematite, Environ. Sci. Tech., 32, 2871, 10.1021/es9803097
Samson, 2000, The depletion and regeneration of dissolution-active sites at the mineral–water interface: II. Regeneration of active sites on α-Fe2O3 at pH 3 and pH 6, Geochim. Cosmochim. Acta, 64, 3675, 10.1016/S0016-7037(00)00461-0
Scheinost, 2001, Kinetic controls on Cu and Pb sorption by ferrihydrite, Environ. Sci. Tech., 35, 1090, 10.1021/es000107m
Schindler, 1987, The surface chemistry of oxides, hydroxides, and oxide minerals, 83
Schwertmann, 2000
Shaikhutdinov, 1999, Oxygen pressure dependence of the α-Fe2O3(0001) surface structure, Surf. Sci., 432, L627, 10.1016/S0039-6028(99)00643-3
Sparks, 2003
Sposito, 1989
Stirnman, 1996, The adsorption and desorption of water on single crystal Mg(100): the role of surface defects, J. Chem. Phys., 105, 1295, 10.1063/1.471993
Strawn, 2004, Copper sorption mechanisms on smectites, Clays Clay Min., 52, 321, 10.1346/CCMN.2004.0520307
Stumm, 1996
Subramaniam, 2001, Modeling kinetics of copper uptake by inorganic colloids under high surface coverage conditions, Coll. Surf. A, 191, 145, 10.1016/S0927-7757(01)00771-3
Sverjensky, 1996, Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water, Geochim. Cosmochim. Acta, 60, 3773, 10.1016/0016-7037(96)00207-4
Swallow, 1980, Sorption of copper and lead by hydrous ferric oxide, Environ. Sci. Tech., 14, 1326, 10.1021/es60171a003
Trainor, 2004, Structure and reactivity of the hydrated hematite (0001) surface, Surf. Sci., 573, 204, 10.1016/j.susc.2004.09.040
Venema, 1998, Instrinsic proton affinity of reactive surface groups of metal (hydr)oxides: application to iron (hydr)oxdies, J. Coll. Int. Sci., 198, 282, 10.1006/jcis.1997.5245
Wang, 1998, The hematite (0001) surface: evidence for domains of distinct chemistry, Phys. Rev. Lett., 81, 1038, 10.1103/PhysRevLett.81.1038
Watanabe, 1986, The point of zero charge and the isoelectric point of γ-Fe2O3 and α-Fe2O3, Bull. Chem. Soc. Japan, 59, 2683, 10.1246/bcsj.59.2683
Watanabe, 1993, Specific acidities of the surface hydroxyl groups on maghemite, Bull. Chem. Soc. Japan, 66, 395, 10.1246/bcsj.66.395
Waychunas, 2001, Structure, aggregation, and characterization of nanomaterials, Rev. Mineral. Geochem., 44, 105, 10.2138/rmg.2001.44.04
Waychunas, 2005, Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms, J. Nanoparticle Res., 7, 409, 10.1007/s11051-005-6931-x
Wehrli, B., 1990. Redox reactions of metal ions at mineral surfaces. In: Stumm, W. (Ed.), Aquatic Chemical Kinetics. pp. 311–336.
Xia, 1997, Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy, Geochim. Cosmochim. Acta, 61, 2211, 10.1016/S0016-7037(97)00079-3
Zhang, 2003, Surface structure of α-Fe2O3 nanocrystal observed by O K-edge X-ray absorption spectroscopy, Nucl. Inst. Meth. Phys. Res. B, 199, 291, 10.1016/S0168-583X(02)01576-8
Zhang, 2004, Particle-size dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes, J. Phys. Chem. B, 108, 15077, 10.1021/jp037584m