Boolean operations on arbitrary polygonal and polyhedral meshes

Computer-Aided Design - Tập 85 - Trang 138-153 - 2017
Sâm Landier1
1Onera, 29 Avenue de la Division Leclerc, 92320 Châtillon, France

Tài liệu tham khảo

Pavi, 2010, Hybrid booleans, Comput Graph Forum, 29 Farrell, 2009, Conservative interpolation between unstructured meshes via supermesh construction, Comput Methods Appl Mech Engrg, 198, 2632, 10.1016/j.cma.2009.03.004 Farrell, 2010, Conservative interpolation between volume meshes by local Galerkin projection, Comput Methods Appl Mech Engrg Menon, 2011, Conservative interpolation on unstructured polyhedral meshes: An extension of the supermesh approach to cell-centered finite-volume variables, Comput Methods Appl Mech Engrg, 200, 2797, 10.1016/j.cma.2011.04.025 Grandy, 1999, Conservative remapping and region overlays by intersecting arbitrary polyhedra, J Comput Phys, 148, 433, 10.1006/jcph.1998.6125 Alauzet, 2010, P1-conservative solution interpolation on unstructured triangular meshes, Internat J Numer Methods Engrg, 84, 1552, 10.1002/nme.2951 Margolin, 2003, Second-order sign-preserving conservative interpolation (remapping) on general grids, J Comput Phys, 184, 266, 10.1016/S0021-9991(02)00033-5 Garimella, 2007, An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, Comput Fluids, 36, 224, 10.1016/j.compfluid.2006.01.014 Alauzet, 2015, A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes, Comput Methods Appl Mech Engrg Wang ZJ, Parthasarathy V, Hariharan N. A fully automated Chimera methodology for multiple moving body problems. In: 36th AIAA aerospace sciences metting and exhibit, 1997. Brenner P. Three dimensional aerodynamics with moving bodies applied to solid propellant. In: AIAA, 27th joint propulsion conf., 1991. Brenner P. Simulation du mouvement relatif de corps soumis à un écoulement instationnaire par une méthode de chevauchement de maillages. In: AGARD FDP symposium on progress and challenges in CFD methods and algorithms, 1995. Badouel D, Hégron G. Opérations booléennes sur polyèdres: évaluation d’arbres CGS. [Research Report] RR-0839, 1988. Benouamer, 1993 Douze, 2015 Eberly, 2000 Borouchaki, 1997, Aspects of 2-D Delaunay mesh generation, Internat J Numer Methods Engrg, 40, 1957, 10.1002/(SICI)1097-0207(19970615)40:11<1957::AID-NME147>3.0.CO;2-6 Eberly, 1998, Triangulation by ear clipping Held M. Efficient and reliable triangulation of polygons. In: Computer graphics international, proceedings IEEE, 1998. Levent Gursoz, 1991, Boolean set operations on non-manifold boundary representation objects, Comput-Aided Des, 23, 33, 10.1016/0010-4485(91)90079-C Edelsbrunner, 1990, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans Graph (TOG), 9, 66, 10.1145/77635.77639 Goldman, 1990, 304 Devillers O, Guigue P. Faster triangle-triangle intersection tests, RR-4488 INRIA, 2002. Landier, 2015, Boolean operations on arbitrary polyhedral meshes, Procedia Eng, 124, 200, 10.1016/j.proeng.2015.10.133 Schewchuk, 1997, Adaptive precision floating-point arithmetic and fast robust geometric predicates, Discrete Comput Geom, 18, 303 Guigue, 2003, Geometric constructions with fixed precision Benoît, 2015, Cassiopee: a CFD pre- and post-processing tool, Aerosp Sci Technol, 45, 10.1016/j.ast.2015.05.023