Boolean operations on arbitrary polygonal and polyhedral meshes
Tài liệu tham khảo
Pavi, 2010, Hybrid booleans, Comput Graph Forum, 29
Farrell, 2009, Conservative interpolation between unstructured meshes via supermesh construction, Comput Methods Appl Mech Engrg, 198, 2632, 10.1016/j.cma.2009.03.004
Farrell, 2010, Conservative interpolation between volume meshes by local Galerkin projection, Comput Methods Appl Mech Engrg
Menon, 2011, Conservative interpolation on unstructured polyhedral meshes: An extension of the supermesh approach to cell-centered finite-volume variables, Comput Methods Appl Mech Engrg, 200, 2797, 10.1016/j.cma.2011.04.025
Grandy, 1999, Conservative remapping and region overlays by intersecting arbitrary polyhedra, J Comput Phys, 148, 433, 10.1006/jcph.1998.6125
Alauzet, 2010, P1-conservative solution interpolation on unstructured triangular meshes, Internat J Numer Methods Engrg, 84, 1552, 10.1002/nme.2951
Margolin, 2003, Second-order sign-preserving conservative interpolation (remapping) on general grids, J Comput Phys, 184, 266, 10.1016/S0021-9991(02)00033-5
Garimella, 2007, An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, Comput Fluids, 36, 224, 10.1016/j.compfluid.2006.01.014
Alauzet, 2015, A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes, Comput Methods Appl Mech Engrg
Wang ZJ, Parthasarathy V, Hariharan N. A fully automated Chimera methodology for multiple moving body problems. In: 36th AIAA aerospace sciences metting and exhibit, 1997.
Brenner P. Three dimensional aerodynamics with moving bodies applied to solid propellant. In: AIAA, 27th joint propulsion conf., 1991.
Brenner P. Simulation du mouvement relatif de corps soumis à un écoulement instationnaire par une méthode de chevauchement de maillages. In: AGARD FDP symposium on progress and challenges in CFD methods and algorithms, 1995.
Badouel D, Hégron G. Opérations booléennes sur polyèdres: évaluation d’arbres CGS. [Research Report] RR-0839, 1988.
Benouamer, 1993
Douze, 2015
Eberly, 2000
Borouchaki, 1997, Aspects of 2-D Delaunay mesh generation, Internat J Numer Methods Engrg, 40, 1957, 10.1002/(SICI)1097-0207(19970615)40:11<1957::AID-NME147>3.0.CO;2-6
Eberly, 1998, Triangulation by ear clipping
Held M. Efficient and reliable triangulation of polygons. In: Computer graphics international, proceedings IEEE, 1998.
Levent Gursoz, 1991, Boolean set operations on non-manifold boundary representation objects, Comput-Aided Des, 23, 33, 10.1016/0010-4485(91)90079-C
Edelsbrunner, 1990, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans Graph (TOG), 9, 66, 10.1145/77635.77639
Goldman, 1990, 304
Devillers O, Guigue P. Faster triangle-triangle intersection tests, RR-4488 INRIA, 2002.
Landier, 2015, Boolean operations on arbitrary polyhedral meshes, Procedia Eng, 124, 200, 10.1016/j.proeng.2015.10.133
Schewchuk, 1997, Adaptive precision floating-point arithmetic and fast robust geometric predicates, Discrete Comput Geom, 18, 303
Guigue, 2003, Geometric constructions with fixed precision
Benoît, 2015, Cassiopee: a CFD pre- and post-processing tool, Aerosp Sci Technol, 45, 10.1016/j.ast.2015.05.023