A smooth surface of tame representation type

Comptes Rendus Mathematique - Tập 351 - Trang 371-374 - 2013
Daniele Faenzi1, Francesco Malaspina2
1Université de Pau et des pays de lʼAdour, BP 576, 64012 Pau cedex, France
2Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

Tài liệu tham khảo

Atiyah, 1957, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3), 7, 414, 10.1112/plms/s3-7.1.414 Ballico, 2009, Qregularity and an extension of the Evans–Griffiths criterion to vector bundles on quadrics, J. Pure Appl. Algebra, 213, 194, 10.1016/j.jpaa.2008.06.002 Ballico, 2011, Regularity and cohomological splitting conditions for vector bundles on multiprojectives spaces, J. Algebra, 345, 137, 10.1016/j.jalgebra.2011.08.015 Costa, 2012, The representation type of Segre varieties, Adv. Math., 230, 1995, 10.1016/j.aim.2012.03.034 Drozd, 2011, Tame and wild projective curves and classification of vector bundles, J. Algebra, 246, 1, 10.1006/jabr.2001.8934 Eisenbud, 1988, The classification of homogeneous Cohen–Macaulay rings of finite representation type, Math. Ann., 280, 347, 10.1007/BF01456058 D. Faenzi, F. Malaspina, The CM representation type of homogeneous spaces, in preparation. Hoffman, 2004, Castelnuovo–Mumford regularity in biprojective spaces, Adv. Geom., 4, 513, 10.1515/advg.2004.4.4.513 Miró-Roig, 2013, The representation type of rational normal scrolls, Rend. Circ. Mat. Palermo, 62, 153, 10.1007/s12215-013-0113-y Miró-Roig, 2013, Representation type of rational ACM surfaces in P4, Algebr. Represent. Theory, 10.1007/s10468-012-9349-z