Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices
Tài liệu tham khảo
Zou, 2020, Recent advances in organic light-emitting diodes: toward smart lighting and displays, Mater. Chem. Front., 4, 788, 10.1039/C9QM00716D
Niu, 2008, Full color and monochrome passive-matrix polymer light-emitting diodes flat panel displays made with solution processes, Org. Electron., 9, 95, 10.1016/j.orgel.2007.10.001
Liu, 2014, Efficient solution-processed blue phosphorescent organic light-emitting diodes with halogen-free solvent to optimize the emissive layer morphology, Org. Electron., 15, 1401, 10.1016/j.orgel.2014.04.005
Youn, 2012, All-solution blade–slit coated polymer light-emitting diodes, Org. Electron., 13, 1470, 10.1016/j.orgel.2012.04.008
Khan, 2015, Technologies for printing sensors and electronics over large flexible substrates: a review, IEEE Sensor. J., 15, 3164, 10.1109/JSEN.2014.2375203
Singh, 2010, Inkjet printing-process and its applications, Adv. Mater., 22, 673, 10.1002/adma.200901141
Kang, 2019, Inkjet printing of mixed-host emitting layer for electrophosphorescent organic light-emitting diodes, ACS Appl. Mater. Interfaces, 11, 21784, 10.1021/acsami.9b04675
Feng, 2020, Highly efficient inkjet printed flexible organic light-emitting diodes with hybrid hole injection layer, Org. Electron., 85, 105822, 10.1016/j.orgel.2020.105822
Yoon, 2016, Double-shot inkjet printing for high-conductivity polymer electrode, Thin Solid Films, 607, 55, 10.1016/j.tsf.2016.03.068
Na, 2009, Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells, J. Mater. Chem., 19, 9045, 10.1039/b915756e
Ashizawa, 2005, Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), Synth. Met., 153, 5, 10.1016/j.synthmet.2005.07.214
Alemu Mengistie, 2013, Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells, J. Mater. Chem., 1, 9907, 10.1039/c3ta11726j
Li, 2015, A nonionic surfactant simultaneously enhancing wetting property and electrical conductivity of PEDOT:PSS for vacuum-free organic solar cells, Sol. Energy Mater. Sol. Cells, 137, 311, 10.1016/j.solmat.2015.02.024
Badre, 2012, Highly conductive poly(3,4-ethylenedioxythiophene):Poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid, Adv. Funct. Mater., 22, 2723, 10.1002/adfm.201200225
Kim, 2014, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization, Adv. Mater., 26, 2268, 10.1002/adma.201304611
Yeo, 2013, Successive solvent-treated PEDOT:PSS electrodes for flexible ITO-free organic photovoltaics, Sol. Energy Mater. Sol. Cells, 114, 104, 10.1016/j.solmat.2013.02.031
Montanino, 2017, Gravure printed PEDOT:PSS as anode for flexible ITO-free organic light emitting diodes, Express Polym. Lett., 11, 518, 10.3144/expresspolymlett.2017.48
Schmidt, 2014, Spray coated indium-tin-oxide-free organic photodiodes with PEDOT:PSS anodes, AIP Adv., 4, 10.1063/1.4899044
C, 2017, Inkjet printing technique and its application in organic light emitting diodes, Disp. Imaging, 2, 339
Du, 2020, Controlling the polarity and viscosity of small molecule ink to suppress the contact line receding and coffee ring effect during inkjet printing, Colloids Surfaces A Physicochem. Eng. Asp., 602, 125111, 10.1016/j.colsurfa.2020.125111
Yildirim Erbil, 2015, Control of stain geometry by drop evaporation of surfactant containing dispersions, Adv. Colloid Interface Sci., 222, 275, 10.1016/j.cis.2014.08.004
Ding, 2011, Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing, Org. Electron., 12, 703, 10.1016/j.orgel.2011.01.027
Kraft, 2020, Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits, Adv. Electron. Mater., 6, 10.1002/aelm.201900681
Lim, 2006, Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors, Appl. Phys. Lett., 88, 10.1063/1.2177642
Chen, 2003, All-polymer RC filter circuits fabricated with inkjet printing technology, Solid State Electron., 47, 841, 10.1016/S0038-1101(02)00443-4
Eom, 2009, Polymer solar cells based on inkjet-printed PEDOT:PSS layer, Org. Electron., 10, 536, 10.1016/j.orgel.2009.01.015
Steirer, 2009, Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells, Thin Solid Films, 517, 2781, 10.1016/j.tsf.2008.10.124
Ely, 2011, Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties, Synth. Met., 161, 2129, 10.1016/j.synthmet.2011.08.014
Singh, 2015, Understanding the formation of PEDOT:PSS films by ink-jet printing for organic solar cell applications, RSC Adv., 5, 78677, 10.1039/C5RA11032G
Soleimani-gorgani, A. Co-solvents Roles in PEDOT : PSS Ink-Jet Inks.
Kommeren, 2018, Combining solvents and surfactants for inkjet printing PEDOT:PSS on P3HT/PCBM in organic solar cells, Org. Electron., 61, 282, 10.1016/j.orgel.2018.06.004
Prontera, 2020, Flexible distributed Bragg reflectors as optical outcouplers for OLEDs based on a polymeric anode, J. Infect. Dis., 1
Jung, 2014, All-inkjet-printed, all-air-processed solar cells, Adv. Energy Mater., 4, 1, 10.1002/aenm.201400432
Yin, 2020, Flexible ITO-free sky-blue polymer light-emitting diodes and printed polymer solar cells based on AgNW/PI transparent conductive electrode, Flex. Print. Electron., 5, 14003, 10.1088/2058-8585/ab603a
He, 2017, The roles of wettability and surface tension in droplet formation during inkjet printing, Sci. Rep., 7, 11841, 10.1038/s41598-017-12189-7
Jang, 2009, Influence of fluid physical properties on ink-jet printability, Langmuir, 25, 2629, 10.1021/la900059m
Glasser, 2019, Tuning the rheology of conducting polymer inks for various deposition processes, Chem. Mater., 31, 6936, 10.1021/acs.chemmater.9b01387
Yunker, 2011, Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature, 476, 308, 10.1038/nature10344
Anyfantakis, 2015, Modulation of the Co ff ee-ring E ff ect in particle/surfactant Mixtures : the importance of particle − interface interactions, Langmuir, 31, 4113, 10.1021/acs.langmuir.5b00453
Majumder, 2012, Overcoming the “coffee-stain” effect by compositional marangoni-flow-assisted drop-drying, J. Phys. Chem. B, 116, 6536, 10.1021/jp3009628