Diffusional-displacive transformation mechanism for the β1 precipitate in a model Mg-rare-earth alloy
Tài liệu tham khảo
Yao, 2018, Annealing-induced microstructural evolution and mechanical anisotropy improvement of the Mg-Gd- Y-Zr alloy processed by hot ring rolling, Mater. Charact., 144, 641, 10.1016/j.matchar.2018.08.022
Pan, 2020, Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy, Acta Mater., 186, 278, 10.1016/j.actamat.2020.01.017
Nie, 2012, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43A, 3891, 10.1007/s11661-012-1217-2
Xie, 2020, Enhanced age-hardening response of the Mg-Sm alloy via alloying with Cd, Mater. Charact., 170, 110669, 10.1016/j.matchar.2020.110669
Xie, 2018, Self-adapted clustering of solute atoms into a confined two-dimensional prismatic platelet with an ellipse-like quasi-unit cell, IUCrJ, 5, 823, 10.1107/S205225251801415X
Saito, 2013, TEM study of real precipitation behavior of an Mg-0.5 at% Ce age-hardened alloy, J. Alloys Compd., 574, 283, 10.1016/j.jallcom.2013.05.131
Zheng, 2017, Segregation of solute atoms in Mg-Ce binary alloy: atomic-scale novel structures observed by HAADFSTEM, Philos. Mag., 97, 1498, 10.1080/14786435.2017.1304656
Liu, 2014, A simulation study of β1 precipitation on dislocations in an Mg-rare earth alloy, Acta Mater., 77, 133, 10.1016/j.actamat.2014.04.054
Zadeh, 2015, Comprehensive study of phase transformation in age-hardening of Mg-3Nd-0.2Zn by means of scanning transmission electron microscopy, Acta Mater., 94, 294, 10.1016/j.actamat.2015.05.001
Natarajan, 2016, On the early stages of precipitation in dilute Mg-Nd alloys, Acta Mater., 108, 367, 10.1016/j.actamat.2016.01.055
Liu, 2017, On the structure and role of β’F in β1 precipitation in Mg-Nd alloys, Acta Mater., 133, 408, 10.1016/j.actamat.2017.03.065
Nishijima, 2009, Characterization of precipitates in Mg-Sm alloy aged at 200 °C, studied by high-resolution transmission electronmicroscopy and high-angle annular detector dark-field scanning transmission electron microscopy, Mater. Trans., 50, 1747, 10.2320/matertrans.M2009046
Zheng, 2016, Precipitation in Mg-Sm binary alloy during isothermal ageing: atomic-scale insights from scanning transmission electron microscopy, Mater. Sci. Eng. A, 669, 304, 10.1016/j.msea.2016.05.096
Li, 2017, On the strengthening precipitate phases and phase transformation of β″/β’ in a Mg-Sm-Zr alloy, Mater. Des., 116, 419, 10.1016/j.matdes.2016.12.040
Xie, 2020, Re-recognition of the aging precipitation behavior in the Mg-Sm binary alloy, J. Alloys Compd., 814, 152320, 10.1016/j.jallcom.2019.152320
Gao, 2006, Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250 °C, Mater. Sci. Eng. A, 431, 322, 10.1016/j.msea.2006.06.018
Liu, 2013, A simulation study of the shape of β’ precipitates in Mg-Y and Mg-Gd alloys, Acta Mater., 61, 453, 10.1016/j.actamat.2012.09.044
Liu, 2017, Formation of and interaction between βF′ and β’ phases in a Mg-Gd alloy, J. Alloys Compd., 712, 334, 10.1016/j.jallcom.2017.04.004
Xie, 2018, Co-existences of the two types of β’ precipitations in peak-aged Mg-Gd binary alloy, J. Alloys Compd., 738, 32, 10.1016/j.jallcom.2017.12.134
Xie, 2019, Atomic-scale characterization of the equilibrium β-Mg5Gd phase by means of HAADF-STEM, Chin. J. Stereol. Image Anal., 24, 91
Gao, 2012, Simulation study of precipitation in an Mg-Y-Nd alloy, Acta Mater., 60, 4819, 10.1016/j.actamat.2012.05.013
Zheng, 2015, Novel structures observed in Mg-Gd-Y-Zr during isothermal ageing by atomic-scale HAADF-STEM, Mater. Lett., 152, 287, 10.1016/j.matlet.2015.03.145
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Manzoor, 2018, Entropy contributions to phase stability in binary random solid solutions, Npj. Comput. Mater., 4, 1, 10.1038/s41524-018-0102-y
Kirkland, 1987, Simulation of annular dark field stem images using a modified multislice method, Ultramicroscopy, 23, 77, 10.1016/0304-3991(87)90229-4
Xie, 2018, New structured laves phase in the mg-in-ca system with nontranslational symmetry and two unit cells, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.085701
Xie, 2018, Self-assembly of two unit cells into a nanodomain structure containing five-fold symmetry, J. Phys. Chem. Lett., 9, 4373, 10.1021/acs.jpclett.8b01526
Xie, 2018, Magnesium alloys strengthened by nanosaucer precipitates with confined new topologically close-packed structure, Cryst. Growth Des., 18, 5866, 10.1021/acs.cgd.8b00542
Banerjee, 2017, Vol. 12
Howe, 1994, Atomic site correspondence and surface relief in the formation of plate-shaped transformation products, Metall. Mater. Trans. A, 25, 1917, 10.1007/BF02649039
Christian, 1994, Crystallographic theories, interface structures, and transformation mechanisms, Metall. Mater. Trans. A, 25, 1821, 10.1007/BF02649031
Muddle, 1994, Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys, Metall. Mater. Trans. A, 25, 1841, 10.1007/BF02649032
Duclos, 1987, hcp-to-fcc transition in Silicon at 78 GPa and studies to 100 GPa, Phys. Rev. Lett., 58, 775, 10.1103/PhysRevLett.58.775
Akahama, 2006, Evidence of a fcc-hcp transition in aluminum at multimegabar pressure, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.045505
Edalati, 2013, High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation, Appl. Phys. Lett., 102, 181902, 10.1063/1.4804273
Hong, 2013, Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression, Scr. Mater., 69, 405, 10.1016/j.scriptamat.2013.05.038
Manna, 2002, Formation of face-centered-cubic zirconium by mechanical attrition, Appl. Phys. Lett., 81, 4136, 10.1063/1.1519942
Ni, 2014, Phases in pure hafnium, Philos. Mag. Lett., 94, 370, 10.1080/09500839.2014.913818
Janish, 2015, Observations of fcc and hcp tantalum, J. Mater. Sci., 50, 3706, 10.1007/s10853-015-8931-2
Fan, 2014, Surface modification-induced phase transformation of hexagonal close-packed gold square sheets, Nat. Commun., 6, 6571, 10.1038/ncomms7571
Asano, 2009, Synthesis of HCP, FCC and BCC structure alloys in the Mg-Ti binary system by means of ball milling, J. Alloys Compd., 480, 558, 10.1016/j.jallcom.2009.01.086
Banerjee, 1996, Dimensionally induced structural transformations in titanium-aluminum multilayers, Phys. Rev. Lett., 76, 3778, 10.1103/PhysRevLett.76.3778
Zhang, 2014, Enhancement of TiZr ductility by hcp-fcc martensitic transformation after severe plastic deformation, Mater. Sci. Eng. A, 594, 321, 10.1016/j.msea.2013.11.085
Cotes, 2004, Fcc/Hcp Martensitic transformation in the Fe-Mn system: part II. driving force and thermodynamics of the nucleation process, Metall. Mater. Trans. A, 35, 83, 10.1007/s11661-004-0111-y
Dahn, 1984, Kinetics of the Martensitic F.C.C. → H.C.P. transformation in Co-Cr-Mo alloy powders, Acta Metall., 32, 1317, 10.1016/0001-6160(84)90077-4
Sato, 1986, Physical properties controlling shape memory effect in Fe-Mn-Si alloys, Acta Metall., 34, 287, 10.1016/0001-6160(86)90199-9
Burgers, 1934, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, 1, 561, 10.1016/S0031-8914(34)80244-3
Zhao, 2017, Mechanisms for deformation induced hexagonal close-packed structure to face-centered cubic structure transformation in zirconium, Scr. Mater., 132, 63, 10.1016/j.scriptamat.2017.01.034
Wu, 2016, Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature, Sci. Rep-UK, 6, 24370, 10.1038/srep24370
Yang, 2018, Proposed mechanism of HCP → FCC phase transition in titianium through first principles calculation and experiments, Sci. Rep-UK, 8, 1992, 10.1038/s41598-018-20257-9