Diffusional-displacive transformation mechanism for the β1 precipitate in a model Mg-rare-earth alloy

Materials Characterization - Tập 174 - Trang 111018 - 2021
Hongbo Xie1, Xiaobo Zhao1, Jingchun Jiang1, Junyuan Bai1, Shanshan Li1, Hucheng Pan2, Xueyong Pang1, Hongxiao Li1, Yuping Ren1,3, Gaowu Qin2
1Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China

Tài liệu tham khảo

Yao, 2018, Annealing-induced microstructural evolution and mechanical anisotropy improvement of the Mg-Gd- Y-Zr alloy processed by hot ring rolling, Mater. Charact., 144, 641, 10.1016/j.matchar.2018.08.022 Pan, 2020, Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy, Acta Mater., 186, 278, 10.1016/j.actamat.2020.01.017 Nie, 2012, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43A, 3891, 10.1007/s11661-012-1217-2 Xie, 2020, Enhanced age-hardening response of the Mg-Sm alloy via alloying with Cd, Mater. Charact., 170, 110669, 10.1016/j.matchar.2020.110669 Xie, 2018, Self-adapted clustering of solute atoms into a confined two-dimensional prismatic platelet with an ellipse-like quasi-unit cell, IUCrJ, 5, 823, 10.1107/S205225251801415X Saito, 2013, TEM study of real precipitation behavior of an Mg-0.5 at% Ce age-hardened alloy, J. Alloys Compd., 574, 283, 10.1016/j.jallcom.2013.05.131 Zheng, 2017, Segregation of solute atoms in Mg-Ce binary alloy: atomic-scale novel structures observed by HAADFSTEM, Philos. Mag., 97, 1498, 10.1080/14786435.2017.1304656 Liu, 2014, A simulation study of β1 precipitation on dislocations in an Mg-rare earth alloy, Acta Mater., 77, 133, 10.1016/j.actamat.2014.04.054 Zadeh, 2015, Comprehensive study of phase transformation in age-hardening of Mg-3Nd-0.2Zn by means of scanning transmission electron microscopy, Acta Mater., 94, 294, 10.1016/j.actamat.2015.05.001 Natarajan, 2016, On the early stages of precipitation in dilute Mg-Nd alloys, Acta Mater., 108, 367, 10.1016/j.actamat.2016.01.055 Liu, 2017, On the structure and role of β’F in β1 precipitation in Mg-Nd alloys, Acta Mater., 133, 408, 10.1016/j.actamat.2017.03.065 Nishijima, 2009, Characterization of precipitates in Mg-Sm alloy aged at 200 °C, studied by high-resolution transmission electronmicroscopy and high-angle annular detector dark-field scanning transmission electron microscopy, Mater. Trans., 50, 1747, 10.2320/matertrans.M2009046 Zheng, 2016, Precipitation in Mg-Sm binary alloy during isothermal ageing: atomic-scale insights from scanning transmission electron microscopy, Mater. Sci. Eng. A, 669, 304, 10.1016/j.msea.2016.05.096 Li, 2017, On the strengthening precipitate phases and phase transformation of β″/β’ in a Mg-Sm-Zr alloy, Mater. Des., 116, 419, 10.1016/j.matdes.2016.12.040 Xie, 2020, Re-recognition of the aging precipitation behavior in the Mg-Sm binary alloy, J. Alloys Compd., 814, 152320, 10.1016/j.jallcom.2019.152320 Gao, 2006, Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250 °C, Mater. Sci. Eng. A, 431, 322, 10.1016/j.msea.2006.06.018 Liu, 2013, A simulation study of the shape of β’ precipitates in Mg-Y and Mg-Gd alloys, Acta Mater., 61, 453, 10.1016/j.actamat.2012.09.044 Liu, 2017, Formation of and interaction between βF′ and β’ phases in a Mg-Gd alloy, J. Alloys Compd., 712, 334, 10.1016/j.jallcom.2017.04.004 Xie, 2018, Co-existences of the two types of β’ precipitations in peak-aged Mg-Gd binary alloy, J. Alloys Compd., 738, 32, 10.1016/j.jallcom.2017.12.134 Xie, 2019, Atomic-scale characterization of the equilibrium β-Mg5Gd phase by means of HAADF-STEM, Chin. J. Stereol. Image Anal., 24, 91 Gao, 2012, Simulation study of precipitation in an Mg-Y-Nd alloy, Acta Mater., 60, 4819, 10.1016/j.actamat.2012.05.013 Zheng, 2015, Novel structures observed in Mg-Gd-Y-Zr during isothermal ageing by atomic-scale HAADF-STEM, Mater. Lett., 152, 287, 10.1016/j.matlet.2015.03.145 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Manzoor, 2018, Entropy contributions to phase stability in binary random solid solutions, Npj. Comput. Mater., 4, 1, 10.1038/s41524-018-0102-y Kirkland, 1987, Simulation of annular dark field stem images using a modified multislice method, Ultramicroscopy, 23, 77, 10.1016/0304-3991(87)90229-4 Xie, 2018, New structured laves phase in the mg-in-ca system with nontranslational symmetry and two unit cells, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.085701 Xie, 2018, Self-assembly of two unit cells into a nanodomain structure containing five-fold symmetry, J. Phys. Chem. Lett., 9, 4373, 10.1021/acs.jpclett.8b01526 Xie, 2018, Magnesium alloys strengthened by nanosaucer precipitates with confined new topologically close-packed structure, Cryst. Growth Des., 18, 5866, 10.1021/acs.cgd.8b00542 Banerjee, 2017, Vol. 12 Howe, 1994, Atomic site correspondence and surface relief in the formation of plate-shaped transformation products, Metall. Mater. Trans. A, 25, 1917, 10.1007/BF02649039 Christian, 1994, Crystallographic theories, interface structures, and transformation mechanisms, Metall. Mater. Trans. A, 25, 1821, 10.1007/BF02649031 Muddle, 1994, Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys, Metall. Mater. Trans. A, 25, 1841, 10.1007/BF02649032 Duclos, 1987, hcp-to-fcc transition in Silicon at 78 GPa and studies to 100 GPa, Phys. Rev. Lett., 58, 775, 10.1103/PhysRevLett.58.775 Akahama, 2006, Evidence of a fcc-hcp transition in aluminum at multimegabar pressure, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.045505 Edalati, 2013, High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation, Appl. Phys. Lett., 102, 181902, 10.1063/1.4804273 Hong, 2013, Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression, Scr. Mater., 69, 405, 10.1016/j.scriptamat.2013.05.038 Manna, 2002, Formation of face-centered-cubic zirconium by mechanical attrition, Appl. Phys. Lett., 81, 4136, 10.1063/1.1519942 Ni, 2014, Phases in pure hafnium, Philos. Mag. Lett., 94, 370, 10.1080/09500839.2014.913818 Janish, 2015, Observations of fcc and hcp tantalum, J. Mater. Sci., 50, 3706, 10.1007/s10853-015-8931-2 Fan, 2014, Surface modification-induced phase transformation of hexagonal close-packed gold square sheets, Nat. Commun., 6, 6571, 10.1038/ncomms7571 Asano, 2009, Synthesis of HCP, FCC and BCC structure alloys in the Mg-Ti binary system by means of ball milling, J. Alloys Compd., 480, 558, 10.1016/j.jallcom.2009.01.086 Banerjee, 1996, Dimensionally induced structural transformations in titanium-aluminum multilayers, Phys. Rev. Lett., 76, 3778, 10.1103/PhysRevLett.76.3778 Zhang, 2014, Enhancement of TiZr ductility by hcp-fcc martensitic transformation after severe plastic deformation, Mater. Sci. Eng. A, 594, 321, 10.1016/j.msea.2013.11.085 Cotes, 2004, Fcc/Hcp Martensitic transformation in the Fe-Mn system: part II. driving force and thermodynamics of the nucleation process, Metall. Mater. Trans. A, 35, 83, 10.1007/s11661-004-0111-y Dahn, 1984, Kinetics of the Martensitic F.C.C. → H.C.P. transformation in Co-Cr-Mo alloy powders, Acta Metall., 32, 1317, 10.1016/0001-6160(84)90077-4 Sato, 1986, Physical properties controlling shape memory effect in Fe-Mn-Si alloys, Acta Metall., 34, 287, 10.1016/0001-6160(86)90199-9 Burgers, 1934, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, 1, 561, 10.1016/S0031-8914(34)80244-3 Zhao, 2017, Mechanisms for deformation induced hexagonal close-packed structure to face-centered cubic structure transformation in zirconium, Scr. Mater., 132, 63, 10.1016/j.scriptamat.2017.01.034 Wu, 2016, Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature, Sci. Rep-UK, 6, 24370, 10.1038/srep24370 Yang, 2018, Proposed mechanism of HCP → FCC phase transition in titianium through first principles calculation and experiments, Sci. Rep-UK, 8, 1992, 10.1038/s41598-018-20257-9