Preparation of rigid cross-linked PVC foam with excellent thermal insulation through adding high-reflectivity IR opacifier
Tài liệu tham khảo
Wang, 2017, Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material, Nanoscale, 9, 5996, 10.1039/C7NR00327G
Cuce, 2014, Toward aerogel based thermal superinsulation in buildings: a comprehensive review, Renew. Sustain. Energy Rev., 34, 273, 10.1016/j.rser.2014.03.017
Nejat, 2015, A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries), Renew. Sustain. Energy Rev., 43, 843, 10.1016/j.rser.2014.11.066
Collishaw, 1994, An assessment of expressions for the apparent thermal conductivity of cellular materials, J. Mater. Sci., 29, 2261, 10.1007/BF00363413
Fricke, 1988, Heat transfer in thermal insulations recent progress in analysis, Int. J. Thermophys., 9, 885, 10.1007/BF00503253
Forest, 2015, Polymer nano-foams for insulating applications prepared from CO2 foaming, Prog. Polym. Sci., 41, 122, 10.1016/j.progpolymsci.2014.07.001
Gong, 2015, Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams, Carbon, 93, 819, 10.1016/j.carbon.2015.06.003
Modesti, 2004, New experimental method for determination of effective diffusion coefficient of blowing agents in polyurethane foams, Polym. Eng. Sci., 44, 2229, 10.1002/pen.20250
Ohara, 2004, The development of a non-fluorocarbon-based extruded polystyrene foam which contains a halogen-free blowing agent, Bull. Chem. Soc. Jpn., 77, 599, 10.1246/bcsj.77.599
Notario, 2015, Experimental validation of the Knudsen effect in nanocellular polymeric foams, Polymer, 56, 57, 10.1016/j.polymer.2014.10.006
Kaemmerlen, 2010, Radiative properties of extruded polystyrene foams: predictive model and experimental results, J. Quant. Spectrosc. Radiat. Transfer, 111, 865, 10.1016/j.jqsrt.2009.11.018
Glicksman, 1987, Radiation heat transfer in foam insulation, Int. J. Heat Mass Tran., 30, 187, 10.1016/0017-9310(87)90071-8
Williams, 1983, Thermal conductivity of plastic foams, Polym. Eng. Sci., 23, 293, 10.1002/pen.760230602
Micco, 2003, On the net radiation method for heat transfer, Eur. J. Phys., 24, 81, 10.1088/0143-0807/24/1/309
Zhang, 2011, Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents, Polymer, 52, 1847, 10.1016/j.polymer.2011.02.016
Yan, 2012, Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes, Polym. Int., 61, 1107, 10.1002/pi.4188
Yeh, 2011, Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes, J. Nanosci. Nanotechnol., 11, 6757, 10.1166/jnn.2011.4246
Schuetz, 1984, A basic study of heat-transfer through foam insulation, J. Cell. Plast., 20, 114, 10.1177/0021955X8402000203
Glicksman, 1989, Factors governing heat transfer through closed cell foam insulation, J. Therm. Insul., 12, 257, 10.1177/109719638901200403
Ferkl, 2013, Heat transfer in one-dimensional micro- and nano-cellular foams, Chem. Eng. Sci., 97, 50, 10.1016/j.ces.2013.04.018
De Micco, 2005, Radiation contribution to the thermal conductivity of plastic foams, J. Polym. Sci., Part B: Polym. Phys., 43, 190, 10.1002/polb.20313
Almanza, 2000, Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams, J. Polym. Sci., Part B: Polym. Phys., 38, 993, 10.1002/(SICI)1099-0488(20000401)38:7<993::AID-POLB10>3.0.CO;2-J
Jiang, 2014, Rigid cross-linked PVC foams with high shear properties: the relationship between mechanical properties and chemical structure of the matrix, Compos. Sci. Technol., 97, 74, 10.1016/j.compscitech.2014.04.005
Jiang, 2018, Hierarchical structure and properties of rigid PVC foam crosslinked by the reaction between anhydride and diisocyanate, J. Appl. Polym. Sci., 135, 46141, 10.1002/app.46141
Jiang, 2014, Preparation and chemical reactions of rigid cross-linked Poly(vinyl chloride) foams modified by epoxy compounds, J. Appl. Polym. Sci., 131, 40567, 10.1002/app.40567
Rakic, 1995, Algorithm for the determination of intrinsic optical constants of metal films, application to aluminum, Appl. Optic., 34, 4755, 10.1364/AO.34.004755
Wu, 2008, Fabrication and characterization of a novel polypropylene/poly(vinyl alcohol)/aluminum hybrid layered assembly for high-performance fibrous insulation, J. Appl. Polym. Sci., 110, 2525, 10.1002/app.28795
Vo, 2011, Advances in thermal insulation of extruded polystyrene foams, Cell. Polym., 30, 1
Sung, 2002, Optical reflectance of metallic coatings: effect of aluminum flake orientation, J. Coating Technol., 74, 55, 10.1007/BF02697975
Caps, 1993, Improved thermal radiation extinction in metal coated polypropylen microfibers, Int. J. Heat Mass Tran., 36, 2789, 10.1016/0017-9310(93)90098-Q
Linteris, 2012, Absorption and reflection of infrared radiation by polymers in fire-like environments, Fire Mater., 36, 537, 10.1002/fam.1113
Placido, 2005, Thermal properties predictive model for insulating foams, Infrared Phys. Technol., 46, 219, 10.1016/j.infrared.2004.04.001
Yuan, 2015, Effects of shape, size and solid content of Al pigments on the low-infrared emissivity coating, Mater. Res. Innovat., 19, S325, 10.1179/1432891715Z.0000000001497
Babrekar, 2010, Influence of filler size and morphology in controlling the thermal emissivity of aluminium/polymer composites for space applications, Mater. Sci. Eng., B, 168, 40, 10.1016/j.mseb.2009.11.009
Panchenko, 2018, Thermal insulation coating based on water-based polymer dispersion, 143
Prager, 2006, The influence of the IR reflection of painted facades on the energy balance of a building, Energy Build., 38, 1369, 10.1016/j.enbuild.2005.02.012
Yuan, 2013, Influence of binder viscosity on the control of infrared emissivity in low emissivity coating, Infrared Phys. Technol., 56, 25, 10.1016/j.infrared.2012.09.004
Huang, 2016, A new approach designed for improving flame retardancy of intumescent polypropylene via continuous extrusion with supercritical CO2, RSC Adv., 6, 112184, 10.1039/C6RA23909A
Huang, 2019, Ultrastrong, flexible and lightweight anisotropic polypropylene foams with superior flame retardancy, Compos. Part A Appl. Sci. Manuf., 116, 180, 10.1016/j.compositesa.2018.10.027
Chan, 2012, Novel thermally conductive thermoplastic/ceramic composite foams, Macromol. Mater. Eng., 297, 1014, 10.1002/mame.201100400
Gong, 2017, Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation, Carbon, 120, 1, 10.1016/j.carbon.2017.05.029
Zhang, 2012, Extruded polystyrene foams with bimodal cell morphology, Polymer, 53, 2435, 10.1016/j.polymer.2012.04.006
Zhao, 2020, Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams, Compos. Sci. Technol., 191, 108084, 10.1016/j.compscitech.2020.108084
Buahom, 2020, Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams, Nanoscale, 12, 13064, 10.1039/D0NR01927E