Preparation of rigid cross-linked PVC foam with excellent thermal insulation through adding high-reflectivity IR opacifier

Composites Science and Technology - Tập 203 - Trang 108566 - 2021
Jiangan You1,2, Haiping Xing1, Jian Xue1, Zhiwei Jiang1, Tao Tang1,2
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
2University of Science and Technology of China, Anhui 230026, China

Tài liệu tham khảo

Wang, 2017, Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material, Nanoscale, 9, 5996, 10.1039/C7NR00327G Cuce, 2014, Toward aerogel based thermal superinsulation in buildings: a comprehensive review, Renew. Sustain. Energy Rev., 34, 273, 10.1016/j.rser.2014.03.017 Nejat, 2015, A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries), Renew. Sustain. Energy Rev., 43, 843, 10.1016/j.rser.2014.11.066 Collishaw, 1994, An assessment of expressions for the apparent thermal conductivity of cellular materials, J. Mater. Sci., 29, 2261, 10.1007/BF00363413 Fricke, 1988, Heat transfer in thermal insulations recent progress in analysis, Int. J. Thermophys., 9, 885, 10.1007/BF00503253 Forest, 2015, Polymer nano-foams for insulating applications prepared from CO2 foaming, Prog. Polym. Sci., 41, 122, 10.1016/j.progpolymsci.2014.07.001 Gong, 2015, Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams, Carbon, 93, 819, 10.1016/j.carbon.2015.06.003 Modesti, 2004, New experimental method for determination of effective diffusion coefficient of blowing agents in polyurethane foams, Polym. Eng. Sci., 44, 2229, 10.1002/pen.20250 Ohara, 2004, The development of a non-fluorocarbon-based extruded polystyrene foam which contains a halogen-free blowing agent, Bull. Chem. Soc. Jpn., 77, 599, 10.1246/bcsj.77.599 Notario, 2015, Experimental validation of the Knudsen effect in nanocellular polymeric foams, Polymer, 56, 57, 10.1016/j.polymer.2014.10.006 Kaemmerlen, 2010, Radiative properties of extruded polystyrene foams: predictive model and experimental results, J. Quant. Spectrosc. Radiat. Transfer, 111, 865, 10.1016/j.jqsrt.2009.11.018 Glicksman, 1987, Radiation heat transfer in foam insulation, Int. J. Heat Mass Tran., 30, 187, 10.1016/0017-9310(87)90071-8 Williams, 1983, Thermal conductivity of plastic foams, Polym. Eng. Sci., 23, 293, 10.1002/pen.760230602 Micco, 2003, On the net radiation method for heat transfer, Eur. J. Phys., 24, 81, 10.1088/0143-0807/24/1/309 Zhang, 2011, Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents, Polymer, 52, 1847, 10.1016/j.polymer.2011.02.016 Yan, 2012, Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes, Polym. Int., 61, 1107, 10.1002/pi.4188 Yeh, 2011, Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes, J. Nanosci. Nanotechnol., 11, 6757, 10.1166/jnn.2011.4246 Schuetz, 1984, A basic study of heat-transfer through foam insulation, J. Cell. Plast., 20, 114, 10.1177/0021955X8402000203 Glicksman, 1989, Factors governing heat transfer through closed cell foam insulation, J. Therm. Insul., 12, 257, 10.1177/109719638901200403 Ferkl, 2013, Heat transfer in one-dimensional micro- and nano-cellular foams, Chem. Eng. Sci., 97, 50, 10.1016/j.ces.2013.04.018 De Micco, 2005, Radiation contribution to the thermal conductivity of plastic foams, J. Polym. Sci., Part B: Polym. Phys., 43, 190, 10.1002/polb.20313 Almanza, 2000, Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams, J. Polym. Sci., Part B: Polym. Phys., 38, 993, 10.1002/(SICI)1099-0488(20000401)38:7<993::AID-POLB10>3.0.CO;2-J Jiang, 2014, Rigid cross-linked PVC foams with high shear properties: the relationship between mechanical properties and chemical structure of the matrix, Compos. Sci. Technol., 97, 74, 10.1016/j.compscitech.2014.04.005 Jiang, 2018, Hierarchical structure and properties of rigid PVC foam crosslinked by the reaction between anhydride and diisocyanate, J. Appl. Polym. Sci., 135, 46141, 10.1002/app.46141 Jiang, 2014, Preparation and chemical reactions of rigid cross-linked Poly(vinyl chloride) foams modified by epoxy compounds, J. Appl. Polym. Sci., 131, 40567, 10.1002/app.40567 Rakic, 1995, Algorithm for the determination of intrinsic optical constants of metal films, application to aluminum, Appl. Optic., 34, 4755, 10.1364/AO.34.004755 Wu, 2008, Fabrication and characterization of a novel polypropylene/poly(vinyl alcohol)/aluminum hybrid layered assembly for high-performance fibrous insulation, J. Appl. Polym. Sci., 110, 2525, 10.1002/app.28795 Vo, 2011, Advances in thermal insulation of extruded polystyrene foams, Cell. Polym., 30, 1 Sung, 2002, Optical reflectance of metallic coatings: effect of aluminum flake orientation, J. Coating Technol., 74, 55, 10.1007/BF02697975 Caps, 1993, Improved thermal radiation extinction in metal coated polypropylen microfibers, Int. J. Heat Mass Tran., 36, 2789, 10.1016/0017-9310(93)90098-Q Linteris, 2012, Absorption and reflection of infrared radiation by polymers in fire-like environments, Fire Mater., 36, 537, 10.1002/fam.1113 Placido, 2005, Thermal properties predictive model for insulating foams, Infrared Phys. Technol., 46, 219, 10.1016/j.infrared.2004.04.001 Yuan, 2015, Effects of shape, size and solid content of Al pigments on the low-infrared emissivity coating, Mater. Res. Innovat., 19, S325, 10.1179/1432891715Z.0000000001497 Babrekar, 2010, Influence of filler size and morphology in controlling the thermal emissivity of aluminium/polymer composites for space applications, Mater. Sci. Eng., B, 168, 40, 10.1016/j.mseb.2009.11.009 Panchenko, 2018, Thermal insulation coating based on water-based polymer dispersion, 143 Prager, 2006, The influence of the IR reflection of painted facades on the energy balance of a building, Energy Build., 38, 1369, 10.1016/j.enbuild.2005.02.012 Yuan, 2013, Influence of binder viscosity on the control of infrared emissivity in low emissivity coating, Infrared Phys. Technol., 56, 25, 10.1016/j.infrared.2012.09.004 Huang, 2016, A new approach designed for improving flame retardancy of intumescent polypropylene via continuous extrusion with supercritical CO2, RSC Adv., 6, 112184, 10.1039/C6RA23909A Huang, 2019, Ultrastrong, flexible and lightweight anisotropic polypropylene foams with superior flame retardancy, Compos. Part A Appl. Sci. Manuf., 116, 180, 10.1016/j.compositesa.2018.10.027 Chan, 2012, Novel thermally conductive thermoplastic/ceramic composite foams, Macromol. Mater. Eng., 297, 1014, 10.1002/mame.201100400 Gong, 2017, Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation, Carbon, 120, 1, 10.1016/j.carbon.2017.05.029 Zhang, 2012, Extruded polystyrene foams with bimodal cell morphology, Polymer, 53, 2435, 10.1016/j.polymer.2012.04.006 Zhao, 2020, Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams, Compos. Sci. Technol., 191, 108084, 10.1016/j.compscitech.2020.108084 Buahom, 2020, Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams, Nanoscale, 12, 13064, 10.1039/D0NR01927E