The high expression of miR-31 in lung adenocarcinoma inhibits the malignancy of lung adenocarcinoma tumor stem cells
Tài liệu tham khảo
Siegel, 2020, Cancer statistics, 2020[J], CA Cancer J Clin, 70, 7, 10.3322/caac.21590
Siegel, 2019, Cancer statistics, 2019[J], CA Cancer J Clin, 69, 7, 10.3322/caac.21551
Siegel, 2018, Cancer statistics, 2018[J], CA Cancer J Clin, 68, 7, 10.3322/caac.21442
Torre, 2016, Lung cancer statistics[J], Adv. Exp. Med. Biol., 893, 1, 10.1007/978-3-319-24223-1_1
Prieto-Vila, 2017, Drug resistance driven by cancer stem cells and their niche[J], Int. J. Mol. Sci., 18, 10.3390/ijms18122574
Rosa, 2016, Approaches for targeting cancer stem cells drug resistance[J], Expet Opin. Drug Discov., 11, 1201, 10.1080/17460441.2016.1243525
Shibue, 2017, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications[J], Nat. Rev. Clin. Oncol., 14, 611, 10.1038/nrclinonc.2017.44
Nagler, 2011, Cell fusion, drug resistance and recurrence CSCs[J], Adv. Exp. Med. Biol., 714, 173, 10.1007/978-94-007-0782-5_9
Phi, 2018, Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment[J], Stem Cells Int, 2018, 5416923
Gurel, 2019, Cancer and cancer stem cells: new molecular perspectives[J], Crit. Rev. Oncog., 24, 99, 10.1615/CritRevOncog.2019029628
Li, 2017, Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies[J], Canc. Lett., 396, 103, 10.1016/j.canlet.2017.03.008
Batlle, 2017, Cancer stem cells revisited[J], Nat. Med., 23, 1124, 10.1038/nm.4409
Yang, 2020, Targeting cancer stem cell pathways for cancer therapy[J], Signal Transduct Target Ther, 5, 8, 10.1038/s41392-020-0110-5
Shukla, 2014, Epigenetics of cancer stem cells: pathways and therapeutics[J], Biochim. Biophys. Acta, 1840, 3494, 10.1016/j.bbagen.2014.09.017
Koury, 2017, Targeting signaling pathways in cancer stem cells for cancer treatment[J], Stem Cells Int, 2017, 2925869
Borah, 2015, Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy[J], Oncogenesis, 4, e177, 10.1038/oncsis.2015.35
Biswas, 2018, MicroRNAs as therapeutic agents: the future of the battle against cancer[J], Curr. Top. Med. Chem., 18, 2544, 10.2174/1568026619666181120121830
Lu, 2012, MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer[J], Carcinogenesis, 33, 1046, 10.1093/carcin/bgs100
Calin, 2006, MicroRNA signatures in human cancers[J], Nat. Rev. Canc., 6, 857, 10.1038/nrc1997
Giannakakis, 2007, miRNA genetic alterations in human cancers[J], Expet Opin. Biol. Ther., 7, 1375, 10.1517/14712598.7.9.1375
Ors-Kumoglu, 2019, Therapeutic microRNAs in human cancer[J], Cytotechnology, 71, 411, 10.1007/s10616-018-0291-8
Han, 2014, Role of microRNA-1 in human cancer and its therapeutic potentials[J], Biomed Res Int, 2014, 428371
Jafri, 2017, Role of miRNAs in human cancer metastasis: implications for therapeutic intervention[J], Semin. Canc. Biol., 44, 117, 10.1016/j.semcancer.2017.02.004
Peng, 2016, The role of MicroRNAs in human cancer[J], Signal Transduct Target Ther, 1, 15004, 10.1038/sigtrans.2015.4
Kwan, 2016, The complexity of microRNAs in human cancer[J], J. Radiat. Res., 57, i106, 10.1093/jrr/rrw009
Heublein, 2018, Association of differential miRNA expression with hepatic vs. peritoneal metastatic spread in colorectal cancer[J], BMC Canc., 18, 201, 10.1186/s12885-018-4043-0
Sun, 2013, MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1)[J], J. Biol. Chem., 288, 9508, 10.1074/jbc.M112.367763
Liu, 2010, MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors[J], J. Clin. Invest., 120, 1298, 10.1172/JCI39566
Wang, 2014, Prognostic role of microRNA-31 in various cancers: a meta-analysis[J], Tumour Biol, 35, 11639, 10.1007/s13277-014-2492-x
Hou, 2016, MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway[J], Anticancer Agents Med Chem, 16, 501, 10.2174/1871520615666150824152353
Stepicheva, 2016, Function and regulation of microRNA-31 in development and disease[J], Mol. Reprod. Dev., 83, 654, 10.1002/mrd.22678
Zhang, 2014, CD133 positive cells isolated from A549 cell line exhibited high liver metastatic potential[J], Neoplasma, 61, 153, 10.4149/neo_2014_021
Nimmakayala, 2019, Unraveling the journey of cancer stem cells from origin to metastasis[J], Biochim. Biophys. Acta Rev. Canc, 1871, 50, 10.1016/j.bbcan.2018.10.006
Su, 2015, Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3beta/beta-catenin signaling required for maintenance of cancer stem cell properties[J], Oncotarget, 6, 38029, 10.18632/oncotarget.5703
Lv, 2017, MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists[J], Nat. Commun., 8, 1036, 10.1038/s41467-017-01059-5
Wang, 2016, Downregulated miR-31 level associates with poor prognosis of gastric cancer and its restoration suppresses tumor cell malignant phenotypes by inhibiting E2F2[J], Oncotarget, 7, 36577, 10.18632/oncotarget.9288
Jin, 2017, Differential sensitivity of target genes to translational repression by miR-17~92[J], PLoS Genet., 13, 10.1371/journal.pgen.1006623
Iwama, 2018, Human microRNAs preferentially target genes with intermediate levels of expression and its formation by mammalian evolution[J], PloS One, 13, 10.1371/journal.pone.0198142