Characterization of singular numbers of products of operators in matrix algebras and finite von Neumann algebras
Tài liệu tham khảo
Belkale, 2001, Local systems on P1−S for S a finite set, Compos. Math., 129, 67, 10.1023/A:1013195625868
Bercovici, 2010, Intersections of Schubert varieties and eigenvalue inequalities in an arbitrary finite factor, J. Funct. Anal., 258, 1579, 10.1016/j.jfa.2009.09.023
Bercovici, 2001, Inequalities for eigenvalues of sums in a von Neumann algebra, vol. 127, 113
Bercovici, 2006, Eigenvalue inequalities in an embeddable factor, Proc. Am. Math. Soc., 134, 75, 10.1090/S0002-9939-05-07952-9
Bercovici, 2009, The Horn conjecture for sums of compact selfadjoint operators, Am. J. Math., 131, 1543, 10.1353/ajm.0.0085
Collins, 2009, On a reduction procedure for Horn inequalities in finite von Neumann algebras, Oper. Matrices, 3, 1, 10.7153/oam-03-01
Fack, 1986, Generalized s-numbers of τ-measurable operators, Pac. J. Math., 123, 269, 10.2140/pjm.1986.123.269
Fuglede, 1952, Determinant theory in finite factors, Ann. Math., 55, 520, 10.2307/1969645
Fulton, 2000, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Am. Math. Soc. (N.S.), 37, 209, 10.1090/S0273-0979-00-00865-X
Harada, 2007, Multiplicative versions of Klyachko's theorem in finite factors, Linear Algebra Appl., 425, 102, 10.1016/j.laa.2007.03.019
Horn, 1962, Eigenvalues of sums of Hermitian matrices, Pac. J. Math., 12, 225, 10.2140/pjm.1962.12.225
Klyachko, 1998, Stable bundles, representation theory and Hermitian operators, Sel. Math. (N.S.), 4, 419, 10.1007/s000290050037
Klyachko, 2000, Random walks on symmetric spaces and inequalities for matrix spectra, Linear Algebra Appl., 319, 37, 10.1016/S0024-3795(00)00219-6
Knutson, 1999, The honeycomb model of GLn(C) tensor products. I. Proof of the saturation conjecture, J. Am. Math. Soc., 12, 1055, 10.1090/S0894-0347-99-00299-4
Speyer, 2005, Horn's problem, Vinnikov curves, and the hive cone, Duke Math. J., 127, 395, 10.1215/S0012-7094-04-12731-0
Weyl, 1912, Das asymptotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann., 71, 441, 10.1007/BF01456804