Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

Copernicus GmbH - Tập 8 Số 16 - Trang 5045-5060
Zhaoyan Liu1, Dantong Liu2, Jianping Huang3, Mark Vaughan4, Itsushi Uno5, Nobuo Sugimoto6, C. Kittaka7, Charles R. Trepte4, Zhe Wang2, C. A. Hostetler4, David M. Winker4
1National Institute of Aerospace, Hampton, VA 23666, USA
2University of Wyoming, Laramie, WY 82071 USA
3Lanzhou University, Lanzhou, Gansu, China
4NASA Langley Research Center, Hampton, VA 23681, USA,
5Kyushu University, Kasuga, Fukuoka, Japan
6National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
7Science Systems and Applications Inc., Hampton, VA, USA

Tóm tắt

Abstract. Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP) and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.

Từ khóa


Tài liệu tham khảo

Barnett, T., Adam, J., and Lettenmaier, D.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005.

Cairo, F., Donfrancesco, G., Adriani, A., Pulvirenti, L., and Federico F.: Comparison of various linear depolarization parameters measured by lidar, Appl. Opt., 38, 4425–4432, 1999.

Cohen, A.: Horizontal visibility and the measurement of atmospheric optical depth of lidar, Appl. Opt., 14, 2878–2882, 1975.

Chun, Y. S., Boo, K. O., Kim, J., Park, S., and Lee, M.: Synopsis transport and physical characteristics of Asian dust in Korea, J. Geophys. Res., 106, 18 461–18 469, 2001.

Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT_4 Modeling System, NOAA Technical Memorandum ERL ARL-224,online available at: http://www.arl.noaa.gov/data/web/models/hysplit4/win95/arl-224.pdf, 2004.

Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79, 831–844, 1998.

Hostetler, C., Liu, Z., Reagan, J., Vaughan, M., Winker, D., Osborn, M., Hunt, W., Powell, K., and Trepte, C.: CALIOP Algorithm Theoretical Basis Document – Part~1: Calibration and Level~1 Data Products, PC-SCI-201, Release~1.0, NASA Langley Research Center, Hampton, VA, USA, online available at: http://www-calipso.larc.nasa.gov/resources/project_documentation.php, 2006.

Hsu, N., Tsay, S., King, M., and Herman, J.: Deep Blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Trans. Geosci. Remote Sens., 44, 3180–3199, 2006.

Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers, K., Trepte, C., and Winker, D.: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938, 2007.

Husar, R., Tratt, D., Schichtel, B., Falke, S., Li, F., Jaffe, D., Gasso, S., Gill, T., Laulainen, N., Lu, F., Reheis, M., Chun, Y., Westphal, D., Holben, B., Gueymard, C., McKendry, I., Kuring, N., Feldman, G., McClain, C., Frouin, R., Merrill, J., DuBois, D., Vignola, F., Murayama, T., Nickovic, S., Wilson, W., Sassen, K., Sugimoto, N., and Malm, W.: Asian dust events of April 1998, J. Geophys. Res., 106, 18 317–18 330, 2001.

Jeong, G. Y.: Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils, J. Geophys. Res., 113, D02208, https://doi.org/10.1029/2007JD008606, 2008.

Kobayashi, A., Hayashida S., Okada, K., and Iwasaka, Y.: Measurements of the polarization properties of Kosa (Asian dust-storm) particles by a laser radar in spring 1983, J. Meteorol. Soc. Japan., 63, 144–149, 1983.

Kurosaki, Y. and Mikami, M.: Threshold wind speed for dust emission in east Asia and its seasonal variations, J. Geophys. Res., 112, D17202, https://doi.org/10.1029/2006JD007988, 2007.

Lau, K., Kim, M., and Kim, K.: Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dynam., 26(7–8), 855–864, https://doi.org/10.1007/s00382-006-0114-z, 2006.

Liu, D., Wang, Z., Liu, Z., Winker, D., and Trepte, C.: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements, J. Geophys. Res., in press, 2008.

Liu, X. and Chen, B.: Climatic warming in the Tibetan Plateau during recent decades, Int. J. Climatol., 20, 1729–1742, 2000.

Liu, Y., Hoskins, B., and Blackburn, M.: Impact of Tibetan orography and heating on the summer flow over Asia, J. Meteor. Soc. Jpn., 85B, 1–19, 2007.

Liu, Z., Omar, A., Vaughan, M., Hair, J., Kittaka, C., Hu, Y., Powell, K., Trepte, C., Winker, D., Hostetler, C., Ferrare, R., and Pierce, B.: CALIPSO lidar observations of optical properties of Saharan dust: A case study of long range transport, J. Geophys. Res., 113, D07207, https://doi.org/10.1029/2007JD008878, 2007.

Liu, Z., Vaughan, M., Winker, D., Hostetler, C., Poole, L., Hlavka, D., Hart, W., and McGill, M.: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data, J. Geophys. Res., 109, D15202, https://doi.org/10.1029/2004JD004732, 2004.

Liu, Z., Sugimoto, N., and Murayama, T.: Extinction-to-backscatter ratio of Asian dust observed by high-spectral-resolution lidar and Raman lidar, Appl. Opt., 41, 2760–2767, 2002.

McNeil, W. and Carswell, A.: Lidar polarization studies of the troposphere, Appl. Opt., 14, 2158–2168, 1975.

Middleton, N.: A geography of dust storms in south-west Asia, J. Climatol., 6, 183–196, 1986.

Murayama, T., Sugimoto, N., Uno, I., Kinoshita, K., Aoki, K., Hagiwara, N., Liu, Z., Matsui, I., Sakai, T., Shibata, T., Arao, K., Shon, B.-J., Won, J.-G., Yoon, S.-C., Li, T., Zhou, J., Hu, H., Abo, M., Iokibe, K., Koga, R., and Iwasaka, Y.: Ground-based network observation of Asian dust events of April 1998 in east Asia, J. Geophys. Res., 106(D16), 18 345–18 360, 2001.

Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40(1), 1002, https://doi.org/10.1029/2000RG000095, 2002.

Pueschel, R. F. and Livingston, J. M.: Aerosol spectral optical depths: Jet fuel and forest fire smokes, J. Geophys. Res., 95, 22 417–22 422, 1990.

Qian, W., Quan, L., and Shi, S.: Variations of the dust storm in China and its climatic control, J. Climate, 15, 1216–1229, 2002.

Ramanathan, V., Ramana, M., Roberts, G., Kim, D., Corrigan, C., Chung, C., and Winker, D.: Warming trends in Asia amplified by brown cloud solar absorption, Nature, 448, 575–578, 2007.

Sassen, K.: Indirect climate forcing over the western US from Asian dust storms, Geophys. Res. Lett., 29(10), 1465, https://doi.org/10.1029/2001GL014051, 2002.

Seinfeld, J., Carmichael, G., Arimoto, R., Conant, W., Brechtel, F., Bates, T., Cahill, T., Clarke, A., Doherty, S., Flatau, P., Huebert, B., Kim, J., Markowicz, K., Quinn, P., Russell, L., Russell, P., Shimizu, A., Shinozuka, Y., Song, C., Tang, Y., Uno, I., Vogelmann, A., Weber, R., Woo, J., and Zhang, X.: ACE-ASIA regional climatic and atmospheric chemical effects of Asian dust and pollution, Bull. Am. Meteorol. Soc., 85, 367–380, 2004.

Shao, Y. and Dong, C.: A review on East Asian dust storm climate, modeling and monitoring, Global Planet. Change, 52, 1–22, 2006.

Sun J., Zhang, M., and Liu, T.: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate, J. Geophys. Res., 106(D10), 10 325–10 333, 2001.

Thompson, L., Mosley-Thompson, E., Davis, M., Lin, P., Henderson, K., and Mashiotta, T.: Tropical glacier and ice core evidence of climate change on annual to millennial time scales, Clim. Change, 59, 137–155, 2003.

Torres, O., Bhartiea, P., Herman, J., Ahmad, Z., and Gleason, J.: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103, D14, 17 099–17 110, 1998.

Tripathi, J. K. and Rajamani, V.: Geochemistry of the loessic sediments on Delhi ridge, eastern Thar desert, Rajasthan: Its implication to exogenic processes, Chem. Geol., 155, 265–278, 1999.

Tsunematsu, N., Kai, K., and Matsumoto, T.: The Influence of Synoptic-scale Air Flow and Local Circulation on the Dust Layer Height in the North of the Taklimakan Desert, Water Air Soil. Poll.: Focus 5, 175–193, 2005.

Uno, I., Amano, H., Emori, S., Kinoshita, K., Matsui, I., and Sugimoto, N.: Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, J. Geophys. Res., 106(D16), 18 331–18 344, https://doi.org/10.1029/2000JD900748, 2001.

Uno, I., Harada, K., Satake, S., Hara, Y., and Wang, Z.: Meteorological characteristics and dust distribution of the Tarim Basin simulated by the nesting RAMS/CFORS dust model, J. Meteor. Soc. Jpn., 83A, 219–239, 2005.

Vaughan, M., Young, S., Winker, D., Powell, K., Omar, A., Liu, Z., Hu, Y., and Hostetler, C.: Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products, Proc. SPIE, 5575, 16–30, 2004.

Wang, X., Xia, D., Wang, T., Xue, X., and Li, J.: Dust sources in arid and semiarid China and southern Mongolica: Impacts of geomorphological setting and surface materials, Geomorphology, 97, 583–600, 2008.

Winker, D., Hunt, W., and McGill, M.: Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135, 2007.

Wu, G., Liu, Y., Wang, T., Wan, R., Liu, X., Li, W., Wang, Z., Zhang, Q., Duan, A., and Liang, X.: Influence of dynamical and thermal forcing by the Tibetan Plateau on Asian climate, J. Hydrometeorol., 8, 770–789, 2007.

Yadav, S. and Rajamani, V.: Geochemistry of aerosols of northwestern part of India adjoining the Thar desert, Geochim Cosmochim Ac., 68, 1975–1988, 2004.

Zhang, X. Y., Arimoto, R., Cao, J. J., An, Z. S., and Wang, D.: Atmospheric dust aerosol over the Tibetan Plateau, J. Geophys. Res., 106(D16), 18 471–18 476, 2001.

Zuberi, B., Bertram, A., Cassa, C., Molina, L., and Molina, M.: Heterogeneous nucleation of ice in (NH4)2SO4-H2O particles with mineral dust immersions, Geophys. Res. Lett., 29(10), 1504, https://doi.org/10.1029/2001GL014289, 2002.