Blow-up results and global existence of positive solutions for the inhomogeneous evolution P-Laplacian equations

Nonlinear Analysis, Theory, Methods and Applications - Tập 66 - Trang 1290-1301 - 2007
Xianzhong Zeng

Tài liệu tham khảo

Bandle, 2000, Critical exponents of Fijita type for inhomogeneous parabolic equations and systems, J. Math. Anal. Appl., 251, 624, 10.1006/jmaa.2000.7035 Deng, 2000, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 243, 85, 10.1006/jmaa.1999.6663 Fujita, 1966, On the blowup of solutions of the Cauchy problem for ut=△u+u1+σ, J. Fac. Sci. Univ. Tokyo Sect. I, 13, 109 Hayakawa, 1973, On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49, 503, 10.3792/pja/1195519254 Kobayashi, 1977, On the blowing up problem for semilinear heat equations, J. Math. Soc. Japan, 29, 407, 10.2969/jmsj/02930407 Levine, 1990, The role of critical exponents in blow-up theorems, SIAM Rev., 32, 262, 10.1137/1032046 Lions, 1985, The concentration–compactness principle in the calculus of variations, The limit case, Rev. Mat. Iberoamericana, 1, 145, 10.4171/RMI/6 2 (1985) 45–121 Liu, 2001, The critical exponent of doubly singular parabolic equations, J. Math. Anal. Appl., 257, 170, 10.1006/jmaa.2000.7341 Lu, 2003 Qi, 1993, On the equation ut=△uα+uβ, Proc. Roy. Soc. Edinburgh Sect. A, 123, 373, 10.1017/S0308210500025750 Serrin, 2002, Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, 79, 10.1007/BF02392645 Weissler, 1981, Existence and nonexistence of global solutions for a semilinear heat equations, Israel J. Math., 38, 29, 10.1007/BF02761845 Wu, 1996 Ye, 1994 Zhao, 1995, On the Cauchy problem and initial traces for the evolution P-Laplacian equations with strongly nonlinear sources, J. Differential Equations, 121, 329, 10.1006/jdeq.1995.1132 Zhang, 1999, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., 97, 515, 10.1215/S0012-7094-99-09719-3