Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology - Tập 132 - Trang 269-274 - 2002
Tài liệu tham khảo
Berghs, 1996, Synaptic plasticity in the pars intermedia of Xenopus laevis, Neuroscience, 70, 833, 10.1016/S0306-4522(96)83020-X
Colonnier, 1968, Synaptic patterns on different cell types in the different laminae of the visual cortex, Brain Res., 9, 268, 10.1016/0006-8993(68)90234-5
De Rijk, 1990, GABA and neuropeptide Y co-exist in axons innervating the neurointermediate lobe of the pituitary of Xenopus laevis: an immunoelectron microscopic study, Neuroscience, 38, 495, 10.1016/0306-4522(90)90045-6
De Rijk, 1992, Demonstration of coexisting catecholamine (dopamine), amino acid (GABA) and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative, ultrastructural, freeze-substitution immunocytochemical study, J. Neurosci., 12, 864, 10.1523/JNEUROSCI.12-03-00864.1992
Gray, 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron-microscopic study, J. Anat., 93, 420
Jenks, 1993, Adaptation physiology: the functioning of the pituitary melanotrope cells during background adaptation of the amphibian Xenopus laevis, Zool. Sci., 10, 1
Kandel, 1991, Directly gated transmission at central synapses, 153
Kramer, 2001, Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis, Microsc. Res. Tech., 54, 188, 10.1002/jemt.1132
Kramer, 2001, Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation, J. Comp. Neurol., 432, 346, 10.1002/cne.1107
Roubos, 1997, Background adaptation by Xenopus laevis: A model for studying neuronal information processing in the pituitary pars intermedia, Comp. Biochem. Physiol., 118A, 533, 10.1016/S0300-9629(97)00035-2
Scheenen, 1996, Spatial and temporal aspects of Ca2+ oscillations in Xenopus laevis melanotrope cells, Cell Calcium, 19, 219, 10.1016/S0143-4160(96)90023-8
Tuinhof, 1993, Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation, Neuroscience, 55, 667, 10.1016/0306-4522(93)90432-F
Tuinhof, 1994, Involvement of retinohypothalamic input, the suprachiasmatic nucleus, the magnocellular nucleus and the locus coeruleus in neural control of melanotrope cells in Xenopus laevis, Neuroscience, 61, 411, 10.1016/0306-4522(94)90241-0
Tuinhof, 1994, Central control of melanotrope cells of Xenopus laevis, Eur. J. Morphol., 32, 307
Ubink, 1998, Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser microscopy study, J. Comp. Neurol., 397, 60, 10.1002/(SICI)1096-9861(19980720)397:1<60::AID-CNE5>3.0.CO;2-G
Van Strien, 1991, Demonstration of dopamine in electron-dense synaptic vesicles in the pars intermedia of Xenopus laevis, by freeze substitution and postembedding immunogold microscopy, Histochemistry, 96, 505, 10.1007/BF00267076
Verburg-van Kemenade, 1986, GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH-secretion, Brain Res. Bull., 17, 697, 10.1016/0361-9230(86)90203-0
Verburg-van Kemenade, 1986, GABA-ergic regulation of melanocyte-stimulating hormone secretion from the pars intermedia of Xenopus laevis: immunocytochemical and physiological evidence, Endocrinology, 118, 260, 10.1210/endo-118-1-260
Verburg-van Kemenade, 1987, A NPY-like peptide may function as MSH-inhibiting factor in Xenopus laevis, Peptides, 8, 61, 10.1016/0196-9781(87)90166-5