Vertical Distribution and Transport of Aerosols during a Dust Event in Xinjiang, Northwest China

Springer Science and Business Media LLC - Tập 37 - Trang 387-403 - 2023
Mengzhu Xu1,2,3, Jianli Ding1,2,3,4, Jie Liu1,2,3, Fangqing Liu1,2,3, Xiaoye Jin2,3,5, Yi Qu1,2,3
1College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, China
2Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
3Key Laboratory of Smart City and Environment Modeling of Higher Education Institutes, Xinjiang University, Urumqi, China
4MNR Technology Innovation Center for Central Asia Geo-Information Exploitation and Utilization, Urumqi, China
5College of Ecology and Environment, Xinjiang University, Urumqi, China

Tóm tắt

Dust aerosols profoundly influence the radiative balance of the earth–atmosphere system and hence the global and regional climates. In this study, using multi-source satellite and ground-level observations combined with meteorological data, we investigated the three-dimensional evolution and transport characteristics of aerosols during a dust event that occurred in Xinjiang, China from 19 to 21 March 2019. Analysis of the meteorological data reveals that the dust air mass initially appeared in the northwest of Xinjiang and was subsequently transported to the Hami and Turpan areas due to the prevailing northwesterly winds, after which the direction of the airflow shifted due to topography, and the dust air masses were transported into southern Xinjiang. The air quality in the affected areas decreased rapidly, accompanied by a significant increase in aerosol optical depth (AOD), with the maximum value exceeding 3.5 in some areas. In addition, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data reveal that the aerosol particles in the dust-affected areas were mainly dust aerosols, with small amounts of pollutant dust aerosols. A reduction in the attenuated backscatter coefficient (β532∥) was found with increasing altitude, with the dust aerosol pollution mainly distributed in the lower troposphere. The size of dust particles in the lower troposphere was relatively small and irregular. The depolarization ratio (PDR) values at altitudes of 8–10 km were relatively lower than those recorded in the lower troposphere, whereas the color ratio (CR) values were higher, which may have been influenced by the sparse vegetation coverage and poor subsurface conditions in Xinjiang, and attributable to the fact that regular large particles of dust are more likely to be dispersed to altitudes between 8 and 10 km within a short period of time. As a consequence of the meteorological conditions and topography, the dusting process in Xinjiang persisted for a relatively long period. These findings will contribute to enhanced understanding of the vertical distribution of aerosols in Northwest China.

Tài liệu tham khảo

Adams, A. M., J. M. Prospero, and C. D. Zhang, 2012: CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents. J. Climate, 25, 6862–6879, doi: https://doi.org/10.1175/JCLI-D-11-00672.1. Alizadeh-Choobari, O., A. Sturman, and P. Zawar-Reza, 2014: A global satellite view of the seasonal distribution of mineral dust and its correlation with atmospheric circulation. Dyn. Atmos. Oceans, 68, 20–34, doi: https://doi.org/10.1016/j.dynatmoce.2014.07.002. Behzad, H., K. Mineta, and T. Gojobori, 2018: Global ramifications of dust and sandstorm microbiota. Genome Biol. Evol., 10, 1970–1987, doi: https://doi.org/10.1093/gbe/evy134. Bi, J. R., J. P. Huang, B. Holben, et al., 2016: Comparison of key absorption and optical properties between pure and transported anthropogenic dust over East and Central Asia. Atmos. Chem. Phys., 16, 15,501–15,516, doi: https://doi.org/10.5194/acp-16-15501-2016. Bi, J. R., J. P. Huang, J. S. Shi, et al., 2017: Measurement of scattering and absorption properties of dust aerosol in a Gobi farmland region of northwestern China–a potential anthropogenic influence. Atmos. Chem. Phys., 17, 7775–7792, doi: https://doi.org/10.5194/acp-17-7775-2017. Che, H. Z., K. Gui, X. G. Xia, et al., 2019: Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys., 19, 10,497–10,523, doi: https://doi.org/10.5194/acp-19-10497-2019. Chen, G. B., S. S. Li, L. D. Knibbs, et al., 2018: A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ., 636, 52–60, doi: https://doi.org/10.1016/j.scitotenv.2018.04.251. Chen, X. Y., J. L. Ding, J. Z. Wang, et al., 2020: Retrieval of fine-resolution aerosol optical depth (AOD) in semiarid urban areas using Landsat data: A case study in Urumqi, NW China. Remote Sens., 12, 467, doi: https://doi.org/10.3390/rs12030467. Chen, X. Y., J. L. Ding, J. Liu, et al., 2021: Validation and comparison of high-resolution MAIAC aerosol products over Central Asia. Atmos. Environ., 251, 118273, doi: https://doi.org/10.1016/j.atmosenv.2021.118273. De Longueville, F., Y.-C. Hountondji, S. Henry, et al., 2010: What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions? Sci. Total Environ., 409, 1–8, doi: https://doi.org/10.1016/j.scitotenv.2010.09.025. Di, A. J., Y. Xue, X. H. Yang, et al., 2016: Dust aerosol optical depth retrieval and dust storm detection for Xinjiang region using Indian national satellite observations. Remote Sens., 8, 702, doi: https://doi.org/10.3390/rs8090702. Dong, Q. Q., Z. W. Huang, W. R. Li, et al., 2022: Polarization lidar measurements of dust optical properties at the junction of the taklimakan desert–Tibetan Plateau. Remote Sens., 14, 558, doi: https://doi.org/10.3390/rs14030558. Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295–308. Fan, Z. L., 1996: Research on the Impacts of Land Utilization to Ecology & Environment in Xinjiang and the Correspondent Countermeasures. China Meteorological Press, Beijing. (in Chinese) Fernández, A. J., F. Molero, P. Salvador, et al., 2017: Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula. Atmos. Res., 196, 129–141, doi: https://doi.org/10.1016/j.atmosres.2017.06.019. Ge, J. M., J. P. Huang, C. P. Xu, et al., 2014: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res. Atmos., 119, 11,772–11,783, doi: https://doi.org/10.1002/2014JD022280. Ginoux, P., J. M. Prospero, O. Torres, et al., 2004: Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. Environ. Modell. Softw., 19, 113–128, doi: https://doi.org/10.1016/s1364-8152(03)00114-2. Gui, K., H. Z. Che, Z. L. Zeng, et al., 2020: Construction of a virtual PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model. Environ. Int., 141, 105801, doi: https://doi.org/10.1016/j.envint.2020.105801. Han, Z. W., H. Ueda, K. Matsuda, et al., 2004: Model study on particle size segregation and deposition during Asian dust events in March 2002. J. Geophys. Res. Atmos., 109, D19205, doi: https://doi.org/10.1029/2004jd004920. Huang, J. P., P. Minnis, B. Chen, et al., 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos., 113, D23212, doi: https://doi.org/10.1029/2008JD010620. Huige, D., L. Siwen, Y. Yun, et al., 2021: Observational study of the vertical aerosol and meteorological factor distributions with respect to particulate pollution in Xi’an. Atmos. Environ., 247, 118215, doi: https://doi.org/10.1016/j.atmosenv.2021.118215. Jia, R., Y. Z. Liu, S. Hua, et al., 2018: Estimation of the aerosol radiative effect over the Tibetan Plateau based on the latest CALIPSO product. J. Meteor. Res., 32, 707–722, doi: https://doi.org/10.1007/s13351-018-8060-3. Jin, X. Y., J. L. Ding, X. Y. Ge, et al., 2022: Machine learning driven by environmental covariates to estimate high-resolution PM2.5 in data-poor regions. PeerJ, 10, e13203, doi: https://doi.org/10.7717/peerj.13203. Kang, L. T., S. Y. Chen, J. P. Huang, et al., 2017: The spatial and temporal distributions of absorbing aerosols over East Asia. Remote Sens., 9, 1050, doi: https://doi.org/10.3390/rs9101050. Kim, J., S. H. Choi, H. K. Cho, et al., 2004. Aerosol and CO loading in the atmosphere observed by the MODIS and MOPITT: Russian forest fire case. Proc. SPIE 5652, Passive Optical Remote Sensing of the Atmosphere and Clouds IV, SPIE, Honolulu, USA, 263–269, doi: https://doi.org/10.1117/12.578903. Kok, J. F., D. A. Ridley, Q. Zhou, et al., 2017: Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci., 10, 274–278, doi: https://doi.org/10.1038/ngeo2912. Levy, R. C., S. Mattoo, L. A. Munchak, et al., 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 2989–3034, doi: https://doi.org/10.5194/amt-6-2989-2013. Li, J. L., Q. He, X. Y. Ge, et al., 2021: Spatio-temporal changes of AOD in Xinjiang of China from 2000 to 2019: Which factor is more influential, natural factor or human factor? PLoS One, 16, e0253942, doi: https://doi.org/10.1371/journal.pone.0253942. Liao, T. T., K. Gui, Y. F. Li, et al., 2021: Seasonal distribution and vertical structure of different types of aerosols in southwest China observed from CALIOP. Atmos. Environ., 246, 118145, doi: https://doi.org/10.1016/j.atmosenv.2020.118145. Liu, J., J. L. Ding, L. Li, et al., 2020: Characteristics of aerosol optical depth over land types in central Asia. Sci. Total Environ., 727, 138676, doi: https://doi.org/10.1016/j.scitotenv.2020.138676. Liu, J., J. L. Ding, M. Rexiding, et al., 2021: Characteristics of dust aerosols and identification of dust sources in Xinjiang, China. Atmos. Environ., 262, 118651, doi: https://doi.org/10.1016/j.atmosenv.2021.118651. Liu, J. J., Y. F. Zheng, Z. Q. Li, et al., 2012: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res. Atmos., 117, D00K38, doi: https://doi.org/10.1029/2011JD016490. Liu, Y., L. H. Li, X. Chen, et al., 2018: Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Global Planet. Change, 169, 145–155, doi: https://doi.org/10.1016/j.gloplacha.2018.06.005. Liu, Z., D. Liu, J. Huang, et al., 2008: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045–5060, doi: https://doi.org/10.5194/acp-8-5045-2008. Liu, Z. Y., A. Omar, M. Vaughan, et al., 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res. Atmos., 113, D07207, doi: https://doi.org/10.1029/2007jd008878. Mahowald, N., S. Albani, J. F. Kok, et al., 2014: The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res., 15, 53–71, doi: https://doi.org/10.1016/j.aeolia.2013.09.002. Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, et al., 2017: The microphysical roles of lower-tropospheric versus midtropospheric aerosol particles in mature-stage MCS precipitation. J. Atmos. Sci., 74, 3657–3678, doi: https://doi.org/10.1175/JAS-D-16-0361.1. Meng, L., X. H. Yang, T. L. Zhao, et al., 2020: Simulated regional transport structures and budgets of dust aerosols during a typical springtime dust storm in the Tarim Basin, Northwest China. Atmos. Res., 238, 104892, doi: https://doi.org/10.1016/j.atmosres.2020.104892. Mhawish, A., T. Banerjee, M. Sorek-Hamer, et al., 2019: Comparison and evaluation of MODIS multi-angle implementation of atmospheric correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ., 224, 12–28, doi: https://doi.org/10.1016/j.rse.2019.01.033. Nabavi, S. O., L. Haimberger, and E. Abbasi, 2019: Assessing PM2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue, and dark target AOD and machine learning algorithms. Atmos. Pollut. Res., 10, 889–903, doi: https://doi.org/10.1016/j.apr.2018.12.017. Olauson, J., 2018: ERA5: The new champion of wind power modelling? Renew. Energy, 126, 322–331, doi: https://doi.org/10.1016/j.renene.2018.03.056. Perrone, M. R., S. Romano, and J. A. G. Orza, 2015: Columnar and ground-level aerosol optical properties: Sensitivity to the transboundary pollution, daily and weekly patterns, and relationships. Environ. Sci. Pollut. Res., 22, 16,570–16,589, doi: https://doi.org/10.1007/s11356-015-4850-7. Qi, Y. L., J. M. Ge, and J. P. Huang, 2013: Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chinese Sci. Bull., 58, 2497–2506, doi: https://doi.org/10.1007/s11434-013-5678-5. Querol, X., A. Tobías, N. Pérez, et al., 2019: Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int., 130, 104867, doi: https://doi.org/10.1016/j.envint.2019.05.061. Rupakheti, D., X. F. Yin, M. Rupakheti, et al., 2021: Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China. Environ. Pollut., 268, 115907, doi: https://doi.org/10.1016/j.envpol.2020.115907. Samset, B. H., G. Myhre, M. Schulz, et al., 2013: Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys., 13, 2423–2434, doi: https://doi.org/10.5194/acp-13-2423-2013. Sarkar, S., A. Chauhan, R. Kumar, et al., 2019: Impact of deadly dust storms (May 2018) on air quality, meteorological, and atmospheric parameters over the northern parts of India. Geo-Health, 3, 67–80, doi: https://doi.org/10.1029/2018gh000170. Shao, Y. P., K.-H. Wyrwoll, A. Chappell, et al., 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Res., 2, 181–204, doi: https://doi.org/10.1016/j.aeolia.2011.02.001. Shen, Y. J., Y. J. Shen, Y. Guo, et al., 2020: Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. CATENA, 187, 104343, doi: https://doi.org/10.1016/j.catena.2019.104343. Takamura, T., N. Sugimoto, A. Shimizu, et al., 2007: Aerosol radiative characteristics at Gosan, Korea, during the atmospheric brown cloud East Asian regional experiment 2005. J. Geophys. Res. Atmos., 112, D22S36, doi: https://doi.org/10.1029/2007jd008506. Turap, Y., D. Talifu, X. M. Wang, et al., 2019: Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmos. Res., 218, 257–268, doi: https://doi.org/10.1016/j.atmosres.2018.12.010. Wang, J. Y., S. X. Su, Z. L. Yin, et al., 2022: Quantitatively assessing the contributions of dust aerosols to direct radiative forcing based on remote sensing and numerical simulation. Remote Sens., 14, 660, doi: https://doi.org/10.3390/rs14030660. Wang, S. J., M. J. Zhang, M. P. Sun, et al., 2015: Comparison of surface air temperature derived from NCEP/DOE R2, ERA-Interim, and observations in the arid northwestern China: A consideration of altitude errors. Theor. Appl. Climatol., 119, 99–111, doi: https://doi.org/10.1007/s00704-014-1107-1. Wang, W., A. Samat, J. Abuduwaili, et al., 2020: Spatio-temporal variations of satellite-based PM2.5 concentrations and its determinants in Xinjiang, northwest of China. Int. J. Environ. Res. Public Health, 17, 2157, doi: https://doi.org/10.3390/ijerph17062157. Wang, Z. M., R. Abla, W. Y. Feng, et al., 2019: Analysis of aerosol optical properties on different underlying surfaces in Xinjiang. J. Glaciol. Geocryol., 41, 1367–1376, doi: https://doi.org/10.7522/j.issn.1000-0240.2019.0087. (in Chinese) Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, SPIE, Hangzhou, China, 1–11, doi: https://doi.org/10.1117/12.466539. Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi: https://doi.org/10.1029/2007gl030135. Xu, X. F., H. Wu, X. Y. Yang, et al., 2020: Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmos. Environ., 237, 117670, doi: https://doi.org/10.1016/j.atmosenv.2020.117670. Yang, F., J. P. Huang, C. L. Zhou, et al., 2020: Taklimakan desert carbon-sink decreases under climate change. Sci. Bull., 65, 431–433, doi: https://doi.org/10.1016/j.scib.2019.12.022. Yin, X. F., B. de Foy, K. P. Wu, et al., 2019: Gaseous and particulate pollutants in Lhasa, Tibet during 2013–2017: Spatial variability, temporal variations and implications. Environ. Pollut., 253, 68–77, doi: https://doi.org/10.1016/j.envpol.2019.06.113. Zhang, X. T., K. Gui, T. T. Liao, et al., 2021: Three-dimensional spatiotemporal evolution of wildfire-induced smoke aerosols: A case study from Liangshan, Southwest China. Sci. Total Environ., 762, 144586, doi: https://doi.org/10.1016/j.scitotenv.2020.144586. Zhang, X. Y., S. L. Gong, T. L. Zhao, et al., 2003: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, doi: https://doi.org/10.1029/2003GL018206. Zhang, Z. C., Z. B. Dong, C. X. Zhang, et al., 2017: The geochemical characteristics of dust material and dust sources identification in northwestern China. J. Geochem. Exp., 175, 148–155, doi: https://doi.org/10.1016/j.gexplo.2016.11.006. Zhang, Z. Y., W. L. Wu, M. Fan, et al., 2019: Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ., 202, 8–16, doi: https://doi.org/10.1016/j.atmosenv.2019.01.013.