The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity

Agriculture, Ecosystems & Environment - Tập 349 - Trang 108440 - 2023
Juan I. Whitworth-Hulse1, Esteban G. Jobbágy1, Lucas Borrás2, Simón E. Alsina1, Javier Houspanossian1,3, Marcelo D. Nosetto1,4
1Grupo de Estudios Ambientales – IMASL, Universidad Nacional de San Luis & CONICET, San Luis D5700, Argentina
2IICAR, Universidad Nacional de Rosario & CONICET, Santa Fe S2125ZAA, Argentina
3Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, San Luis D5700ANU, Argentina
4Cátedra de Climatología Agrícola (FCA-UNER), Ruta 11, km 10, Oro Verde, Entre Ríos E3101, Argentina

Tài liệu tham khảo

Aapresid, 2019. Evolución y retos de la Siembra Directa en Argentina. 〈https://www.aapresid.org.ar/superficie/〉, Aguiar, 2020, Global changes in crop diversity: trade rather than production enriches supply, Glob. Food Sect., 26 Akaike, H., 1974. Selected PApers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics)., in: Springer Series in Statistics (Perspectives in Statistics). Alsina, 2020, Base de datos “NAPA”: primera síntesis de la dinámica freática pampeana desde 1950 al presente, Cienc. Suelo, 38 Aragón, 2011, Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina, Ecohydrology, 4 Aramburu Merlos, 2015, Potential for crop production increase in Argentina through closure of existing yield gaps, Field Crops Res., 184 Barros, 2015, Climate change in Argentina: trends, projections, impacts and adaptation, Wiley Inter. Rev. Clim. Change, 6 Blomqvist, 2020, Drivers of increasing global crop production: a decomposition analysis, Environ. Res. Lett., 15 Cassman, 2020, A global perspective on sustainable intensification research, Nat. Sustain, 3 R. Core Team, R.C, 2017. R: a Language and Environment for Statistical Computing, R Found. Stat. Comput., Vienna, Austria. http://www. R-project. org/. Diaz-Zorita, M., Pepi, M. L., Grosso, G. A., 1998. Estudio de las precipitaciones en el oeste bonaerense (Study of the precipitation in western Buenos Aires). EEA INTA General Villegas report, Buenos Aires. Famiglietti, 2014, The global groundwater crisis, Nat. Clim. Chang, 10.1038/nclimate2425 FAO, 2015. The impact of disasters on agriculture and food security. FAO Report, Rome. FAOSTAT, 2019. Food and Agriculture Organization Corporate Statistical Database. 〈http://www.fao.org/faostat/en/〉. de Felipe, 2016, Soybean genetic gain in maturity groups III to V in Argentina from 1980 to 2015, Crop Sci., 56 Florio, 2014, Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas, Agric. Water Manag, 146 Fraisse, 2008, El Niño - Southern oscillation influences on soybean yields in eastern Paraguay, Int. J. Climatol., 28 Gambin, 2016, Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina, Agric. Syst., 146 Greve, 2014, Global assessment of trends in wetting and drying over land, Nat. Geosci., 7 Hall, 2013, Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops, Field Crops Res., 143 Houspanossian, 2018, Long-lasting floods buffer the thermal regime of the Pampas, Theor. Appl. Clim., 131 Huang, 2016, Accelerated dryland expansion under climate change, Nat. Clim. Chang, 6 INDEC, 2019. Censo Nacional Agropecuario 2018: resultados preliminares. INDEC Report, Buenos Aires. INTA-SAGyP, 1990 Jobbágy, 2021, Impronta ambiental de la agricultura de granos en Argentina: revisando desafíos propios y ajenos, Cienc. Hoy, 29 Jobbagy, 2008, El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana, Ecol. Austral., 3 Jozami, 2018, Temporal variability of ENSO effects on corn yield at the central region of Argentina, Int. J. Climatol., 38 Kahlown, 2005, Effect of shallow groundwater table on crop water requirements and crop yields, Agric. Water Manag., 76, 10.1016/j.agwat.2005.01.005 Kuppel, 2015, What does it take to flood the Pampas?: lessons from a decade of strong hydrological fluctuations, Water Resour. Res., 51 Landerer, 2012, Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48 Lesk, 2016, Influence of extreme weather disasters on global crop production, Nature, 529, 84, 10.1038/nature16467 Li, 2019, Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States, Glob. Chang Biol., 25 Lobell, 2020, Changes in the drought sensitivity of US maize yields, Nat. Food, 1 Maddonni, 2012, Analysis of the climatic constraints to maize production in the current agricultural region of Argentina-a probabilistic approach, Theor. Appl. Clim., 107 Magliano, 2015, Precipitation event distribution in central argentina: spatial and temporal patterns, Ecohydrology, 8 Messina, 1999, Land allocation conditioned on El Nino-Southern Oscillation phases in the Pampas of Argentina, Agric. Syst., 60 Mourtzinis, 2021, Assessing benefits of artificial drainage on soybean yield in the North Central US region, Agric. Water Manag., 243 Muggeo, 2008, segmented: An R package to Fit Regression Models with Broken-Line Relationships, R News, 8 Nóia Júnior, 2019, Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases, Agric. Syst., 173 Nosetto, 2009, Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas, Field Crops Res., 113 Nosetto, 2012, The hydrologic consequences of land cover change in central Argentina, Agric. Ecosyst. Environ., 154 Nosetto, 2015, Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas, Agric. Ecosyst. Environ., 206 Pekel, 2016, High-resolution mapping of global surface water and its long-term changes, Nature, 540 Pellegrini, 2018, Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution, Proc. Natl. Acad. Sci. USA, 115 Pereira, 2012, The development of Brazilian agriculture: future technological challenges and opportunities, Agric. Food Secur, 10.1186/2048-7010-1-4 Pielke, 2005, Land use and climate change, Science, 310 Piquer-Rodríguez, 2018, Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions, Appl. Geogr., 91 Podestá, 1999, Associations between grain crop yields in Central-Eastern Argentina and El Niño-Southern oscillation, J. Appl. Meteorol., 38 Potapov, 2022, Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century, Nat. Food, 3 Rivera, J.A., Penalba, O.C., 2015. El Niño/La Niña events as a tool for regional drought monitoring in Southern South America. In: Drought: Research and Science-Policy Interfacing - Proceedings of the International Conference on Drought: Research and Science-Policy Interfacing. doi: 10.1201/b18077-50. Rizzo, 2018, Do shallow water tables contribute to high and stable maize yields in the US Corn Belt?, Glob. Food Sect., 10.1016/j.gfs.2018.07.002 Rizzo, 2022, Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments, PNAS, 119 Rötter, 2018, Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—a review, Field Crops Res, 221 Santini, 2022, Complex drought patterns robustly explain global yield loss for major crops, Sci. Rep., 12 Scanlon, 2005, Impact of land use and land cover change on groundwater recharge and quality in the southwestern US, Glob. Chang Biol., 11 Schauberger, 2017, Consistent negative response of US crops to high temperatures in observations and crop models, Nat. Commun., 8 Setter, 2003, Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats, Plant Soil, 10.1023/A:1024573305997 Song, 2021, Massive soybean expansion in South America since 2000 and implications for conservation, Nat. Sustain, 4 Soriano, 1992, Río de la Plata grasslands, 367 Thornton, 2014, Climate variability and vulnerability to climate change: a review, Glob. Chang Biol., 10.1111/gcb.12581 Trnka, 2014, Adverse weather conditions for European wheat production will become more frequent with climate change, Nat. Clim. Chang, 4 USDA-NASS, 2019. 2017 Census of agriculture: United States summary and state data. United States Summary and State Data 1. Vera, 2006, Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models, Geophys. Res. Lett., 33 Viglizzo, 2006, Land-use options for Del Plata Basin in South America: tradeoffs analysis based on ecosystem service provision, Ecol. Econ., 57 Viglizzo, 2009, The dynamics of cultivation and floods in arable lands of Central Argentina, Hydrol. Earth Syst. Sci., 13 Viglizzo, 2011, Ecological and environmental footprint of 50 years of agricultural expansion in Argentina, Glob. Chang Biol., 17 Vitantonio-Mazzini, 2020, Management options for reducing maize yield gaps in contrasting sowing dates, Field Crops Res., 251 Vitantonio-Mazzini, 2021, Sowing date, genotype choice, and water environment control soybean yields in central Argentina, Crop Sci., 61 West, 2014, Leverage points for improving global food security and the environment, Science, 1979, 345 Zampieri, 2017, Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales, Environ. Res. Lett., 12 Zipper, 2016, Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes, Environ. Res. Lett., 11 Zulauf, C., Brown, B., 2019. Tillage practices, 2017 US Census of Agriculture. Farmdoc Daily, Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign 9. Zuur, A., leno, E., Walker, N., Saveliev, A., 2009. GLM and GAM for Count Data BT - Mixed Effects Models and Extensions in Ecology with R, in: Mixed Effects Models and Extensions in Ecology with R.