Dynamics of the universe with variable parameters that govern the gravitational interactions

General Relativity and Gravitation - Tập 56 - Trang 1-26 - 2024
R. K. Mishra1, Navya Jain1
1Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal, India

Tóm tắt

The present study investigates the Friedmann–Lemaitre–Robertson–Walker models (often FLRW models) with time varying G and $$\Lambda $$ in the general theory of relativity. In this communication the Einstein field equations have been solved by considering the deceleration parameter q(t) as a varying function of time t and the Hubble parameter H defined as $$q=-l(t-t_0)+\beta -1$$ and $$q=-1+\frac{2\alpha (H-1)}{H}$$ , where $$l,t_0,\beta , \alpha $$ are non-negative constants. We have analyzed the values of different constants that will generate a transition for the universe from an early decelerating phase to a recent acceleration phase. The physical and graphic behaviour have also been planned to study in this communication.

Tài liệu tham khảo

Abdel-Rahman, A.M.M.: A critical density cosmological model with varying gravitational and cosmological constants. Gen. Rel. Grav. 22, 655–663 (1990) Akarsu, Ö., Dereli, T.: Cosmological models with linearly varying deceleration parameter. Int. J. Theor. Phys. 51, 612–621 (2012) Beesham, A.: Variable-g cosmology and creation. Int. J. Theor. Phys. 25, 1295–1298 (1986) Berman, M.S.: Cosmological models with variable gravitational and cosmological constants. Gen. Rel. Grav. 23, 465–469 (1991) Berman, M.S., de Mello, Gomide F.: Cosmological models with constant deceleration parameter. Gen. Rel. Grav. 20, 191–198 (1988) Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124(3), 925 (1961) Canuto, V.M., Narlikar, J.V.: Cosmological tests of the hoyle-narlikar conformal gravity. Astrophys. J. 1(236), 6–23 (1980) Chand, A., Mishra, R., Pradhan, A.: Frw cosmological models in brans-dicke theory of gravity with variable q and dynamical \(\lambda \)-term. Astrophys. Space Sci. 361(2), 81 (2016) Chawla, C., Mishra, R., Pradhan, A.: Anisotropic bianchi-i cosmological models in string cosmology with variable deceleration parameter. arXiv preprint arXiv:1203.4014 (2012) Chawla, C., Mishra, R., Pradhan, A.: String cosmological models from early deceleration to current acceleration phase with varying g and. Eur. Phys. J. Plus 127(11), 137 (2012) Chiba, T., Nakamura, T.: The luminosity distance, the equation of state, and the geometry of the universe. Prog. Theor. Phys. 100(5), 1077–1082 (1998) Dirac, P.A.: The cosmological constants. Nature 139(3512), 323 (1937) Dunajski, M., Gibbons, G.: Cosmic jerk, snap and beyond. Class. Quant. Grav. 25(23), 235012 (2008) Fierz, M.: On the physical interpretation of p. jordan’s extended theory of gravitation. Helv. Phys. Acta. 29, 128–134 (1956) Friedman, A.: Über die krümmung des raumes. Zeitschrift für Physik 10(1), 377–386 (1922) Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23(2), 347 (1981) Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15(3), 168–173 (1929) Jordan, P.: Die physikalischen weltkonstanten. Naturwissenschaften 25(32), 513–517 (1937) Jordan, P.: Schwerkraft und weltall: Grundlagen der theoretischen kosmologie. Die Wissenschaft (1955) Lemaître, G.: Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles 47, 49–59 (1927) Levitt, L.: The gravitational constant at time zero. Nuovo Cimento Lettere 29, 23 (1980) Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108(6), 389–393 (1982) Mishra, R., Chand, A.: Cosmological models with variable deceleration parameter in scalar tensor theory of gravitation. J. Int. Acad. Phys. Sci. 23, 13–24 (2012) Mishra, R., Chandra, R.: Cosmological models with \(g\rho \propto h^{2}\) and \(\lambda \propto h^{2}\). Math. Educ. 38, 202 (2004) Mishra, R., Pradhan, A., Chawla, C.: Anisotropic viscous fluid cosmological models from deceleration to acceleration in string cosmology. Int. J. Theor. Phys. 52(8), 2546–2559 (2013) Oli, S.: Bianchi type i two-fluid cosmological models with a variable g and \(\lambda \). Astrophys. Space Sci. 314, 89–94 (2008) Pande, H., Chandra, R., Mishra, R.K.: Cosmological models with variable cosmological constant and gravitational constant. Indian J. Pure Appl. Math. 31(2), 161–175 (2000) Robertson, H.P.: Kinematics and world-structure. Astrophys. J. 82, 284 (1935) Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quant. Grav. 21(11), 2603 (2004) Walker, A.: On riemanntan spaces with spherical symmetry about a line, and the conditions for isotropy in genj relativity. Q. J. Math. 1, 81–93 (1935)