Daylighting simulation of a heritage building by comparing matrix methods and solar models
Tài liệu tham khảo
Abreu, 2019, Prediction of diffuse horizontal irradiance using a new climate zone model, Renew. Sustain. Energy Rev., 110, 28, 10.1016/j.rser.2019.04.055
Abyad, 2017
Ahmad, 2012, Luminous exposures and light-fastness survey in daylit historical museum galleries under tropical sky conditions, Adv. Mater. Res., 488–489, 1547, 10.4028/www.scientific.net/AMR.488-489.1547
Almodovar-Melendo, 2018, Lighting features in historical buildings: Scientific analysis of the Church of Saint Louis of the Frenchmen in Sevilla, Sustainability (Switzerland), 10
Al-Sallal, 2018, UAE heritage buildings converted into museums: Evaluation of daylighting effectiveness and potential risks on artifacts and visual comfort, Energy Build., 333, 10.1016/j.enbuild.2018.06.067
Ayoub, 2019, 100 Years of daylighting : A chronological review of daylight prediction and calculation methods, Sol. Energy, 194, 360, 10.1016/j.solener.2019.10.072
Ayoub, 2020, A review on light transport algorithms and simulation tools to model daylighting inside buildings, Sol. Energy, 198, 623, 10.1016/j.solener.2020.02.018
Ayoub, 2020, A review on machine learning algorithms to predict daylighting inside buildings, Sol. Energy, 202, 249, 10.1016/j.solener.2020.03.104
Ayoub, 2021, Self-organizing profiles to characterize representative temporal settings for daylight simulations, Sol. Energy, 214, 248, 10.1016/j.solener.2020.11.051
Bacci, 2004, Calibration and use of photosensitive materials for light monitoring in museums: Blue Wool Standard 1 as a case study, Stud. Conserv., 49, 85, 10.1179/sic.2004.49.2.85
Balocco, 2019, A method for sustainable lighting, preventive conservation, energy design and technology-Lighting a historical church converted into a university library, Sustainability (Switzerland), 11, 1
Balocco, 2016, Assessment of the luminous climate inside historical, IEEE Xplore, 1
Boland, 2008, Models of diffuse solar radiation, Renewable Energy, 33, 575, 10.1016/j.renene.2007.04.012
Brembilla, 2019, Climate-based daylight modelling for compliance verification: Benchmarking multiple state-of-the-art methods, Build. Environ., 158, 151, 10.1016/j.buildenv.2019.04.051
Brembilla, 2018, Influence of input reflectance values on climate- based daylight metrics using sensitivity analysis, J. Build. Perform. Simul., 10.1080/19401493.2017.1364786
CEN, 2014. CEN/TS 16163:2014 Conservation of Cultural Heritage – Guidelines and procedures for choosing appropriate lighting for indoor exhibitions, 1–24.
CEN, 2011. EN 12464-1 - Light and lighting — Lighting of work places, Technical Report, European Standard.
Ciampi, 2015, Daylighting contribution for energy saving in a historical building, Energy Procedia, 78, 1257, 10.1016/j.egypro.2015.11.270
CIE:171, 2006. Technical report - Test cases to assess the accuracy of lighting computer programs, Technical Report, ISSN: 978 3 901906 47 3, Vienna, Austria. URL: https://cie.co.at/publications/ test-cases-assess-accuracy-lighting-computer-programs.
Del Hoyo-Meĺendez, J.M., Mecklenburg, M.F., Doḿenech-Carbó, M.T., 2011. An evaluation of daylight distribution as an initial preventive conservation measure at two Smithsonian Institution Museums, Washington DC, USA. J. Cultural Heritage 12 (2011) 54–64. doi:10.1016/j.culher.2010.05.003.
Dervishi, 2012, Computing diffuse fraction of global horizontal solar radiation: A model comparison, Sol. Energy, 86, 1796, 10.1016/j.solener.2012.03.008
Eldaidamony, 2019, Adapting Geographies of Gentrification in Egypt: Lesson Learned from Fatimid Cairo and Heliopolis
Geisler-Moroder, D., Lee, E.S., Ward, G.J., 2017. Validation of the five-phase method for simulating complex fenestration systems with radiance against field measurements, 1808–1816. URL: https://eta.lbl.gov/publications/validation-five-phase-method.
Gueymard, 2015, Validation of direct normal irradiance predictions under arid conditions: A review of radiative models and their turbidity-dependent performance, Renew. Sustain. Energy Rev., 45, 379, 10.1016/j.rser.2015.01.065
IESNA, 2011. The Lighting Handbook - 10th Edition.
Jacobs, A., 2013. JALOXA: RADIANCE colour picker. URL: https://www.jaloxa.eu/resources/radiance/ colour{_}picker/.
Kharvari, 2020, An empirical validation of daylighting tools: Assessing radiance parameters and simulation settings in Ladybug and Honeybee against field measurements, Sol. Energy, 207, 1021, 10.1016/j.solener.2020.07.054
Kim, 2011, Daylighting simulation as an architectural design process in museums installed with toplights, Build. Environ., 46, 210, 10.1016/j.buildenv.2010.07.015
Kotey, N., Wright, J.L., Collins, M., 2009. Determining off-normal solar optical properties of drapery fabrics. ASHRAE Trans. 115 PART 2, 3–17. URL: https://uwaterloo.ca/solar-thermal-research-laboratory/ sites/ca.solar-thermal-research-laboratory/files/uploads/files/ash_fabricprops_bw400.pdf.
Leccese, F., Salvadori, G., Tambellini, G., Kazanasmaz, Z.T., 2020. Application of climate-based daylight simulation to assess lighting conditions of space and artworks in historical buildings: the case study of cetacean gallery of the Monumental Charterhouse of Calci. J. Cultural Heritage, doi:10.1016/j.culher.2020.06.010.
Lechner, 2015
Lee, 2018, Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation, Sol. Energy, 160, 380, 10.1016/j.solener.2017.12.029
Lee, 2021, Application of simple sky and building models for the evaluation of solar irradiance distribution at indoor locations in buildings, Build. Environ., 10.1016/j.buildenv.2021.107840
Li, 2010, A review of daylight illuminance determinations and energy implications, Appl. Energy, 87, 2109, 10.1016/j.apenergy.2010.03.004
Magarreiro, 2014, Assessment of diffuse radiation models for cloudy atmospheric conditions in the Azores region, Sol. Energy, 108, 538, 10.1016/j.solener.2014.08.003
Mahmoud, 2020, Experimental investigation of daylight performance in an adapted egyptian heritage building, J. Eng. Appl. Sci., 67, 1193
Mardaljevic, 1995, Validation of a lighting simulation program under real sky conditions, Light. Res. Technol., 27, 181, 10.1177/14771535950270040701
Mardaljevic, J., 2000. Daylight simulation: validation, sky models and daylight coefficients, URL: https: //repository.lboro.ac.uk/articles/thesis/.
Maxwell, E.L., 1987. A quasi-physical model for converting hourly global horizontal to direct normal lnsolation, technical report, report SERI/TR-215-3087, Solar Energy Institute, Golden, CO. URL: https://www. nrel.gov/docs/legosti/old/3087.pdf.
Mayorga Pinilla, S., Vázquez MolińI, D., Alvarez Fernández-Balbuena, A., Hernández Raboso, G., Herráez, J.A.,́ Azcutia, M., Garćıa Botella, A., 2016. Advanced daylighting evaluation applied to cultural heritage buildings and́ museums: Application to the cloister of Santa Maria El Paular. Renew. Energy 85, 1362–1370. doi:10.1016/j.renene.2015.07.011.
McNeil, 2012, A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems, J. Build. Perform. Simul., 6, 24, 10.1080/19401493.2012.671852
Ng, 2001, Advanced lighting simulation in architectural design in the tropics, Autom. Constr., 10, 365, 10.1016/S0926-5805(00)00053-4
Nocera, 2018, Daylight performance of classrooms in a mediterranean school heritage building, Sustainability (Switzerland), 10
Osborne, J., 2012. Building a comprehensive dataset for the validation of daylight simulation software, using complex “real architecture”, 2012. URL: http://hdl.handle.net/10063/3054. doi:10063/3054.
Pereira, 2017, Assessment of the indoor environmental conditions of a baroque library in Portugal, Energy Procedia, 133, 257, 10.1016/j.egypro.2017.09.385
Perez, 1990, Modeling daylight availability and irradiance components from direct and global irradiance, Sol. Energy, 44, 271, 10.1016/0038-092X(90)90055-H
Purup, 2020, Research framework for development of building performance simulation tools for early design stages, Autom. Constr., 109, 10.1016/j.autcon.2019.102966
Reffat, 2020, Determination of optimal energy-efficient integrated daylighting systems into building windows, Sol. Energy, 209, 258, 10.1016/j.solener.2020.08.086
Reindl, D.T., Beckman, W.A., D.J. A, 1990. Diffuse fraction correlations. Sol. Energy 47, 311–312. doi:10. 1016/0038-092X(91)90123-E.
Reinhart, 2001, Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds, Energy Build., 33, 683, 10.1016/S0378-7788(01)00058-5
Santos, L., Leitão, A., Caldas, L., 2018. A comparison of two light-redirecting fenestration systems using a modified modeling technique for Radiance 3-phase method simulations. Sol. Energy 161, 47–63. doi:10.1016/j. solener.2017.12.020.
Saxena, M., Ward, G., Perry, T., Heschong, L., Higa, R., 2010. Dynamic radiance - predicting annual daylighting with variable fenestration optics using BSDFS. In: 4th national conference of IBPSA-USA, 11– 13 August 2010 New York City, New York, 402–409. URL: http://www.ibpsa.us/pub/simbuild2010/papers/ SB10-DOC-TS08A-01-Saxena.pdf.
Shafavi, 2020, Investigation of illuminance-based metrics in predicting occupants’ visual comfort (case study: Architecture design studios), Sol. Energy, 197, 111, 10.1016/j.solener.2019.12.051
Subramaniam, S., 2018. Parametric modeling strategies for efficient annual analysis of daylight in buildings. URL: https://www.researchgate.net/publication/325248582_Parametric_modeling_strategies_ for_efficient_annual_analysis_of_daylight_in_buildings.
Tomasi, C., P.B.H., 2014. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres. J. Geophys. Res.: Atmos. 119, 1363–1385. doi:10.1002/2013JD020600.
Torres, J., De Blas, M., Garćıa, A., de Francisco, A., 2010. Comparative study of various models in estimating hourly diffuse solar irradiance. Renew. Energy 35, 1325–1332. doi:10.1016/j.renene.2009.11.025.
Tregenza, 2018, Daylighting buildings: Standards and the needs of the designer, Light. Res. Technol., 50, 63, 10.1177/1477153517740611
Treguenza, 1983, Daylight coefficients, Light. Res. Technol., 65, 10.1177/096032718301500201
Turan, 2020, The value of daylight in office spaces, Build. Environ., 168, 10.1016/j.buildenv.2019.106503
Tzempelikos, 2008, A review of optical properties of shading devices, Adv. Build. Energy Res., 2, 211, 10.3763/aber.2008.0207
van Duijnhoven, 2018, External validations of a non-obtrusive practical method to measure personal lighting conditions in offices, Build. Environ., 134, 74, 10.1016/j.buildenv.2018.02.033
Ward, 2011, Simulating the daylight performance of complex fenestration systems using bidirectional scattering distribution functions within radiance, LEUKOS – J. Illuminating Eng. Soc. North America, 7, 241, 10.1080/15502724.2011.10732150
Ward, G.J., 2015. Out of plane shading, 14th International Radiance Workshop, URL: https://www.radiance-online.org/community/workshops/2015-philadelphia/presentations/day1/ OutOfPlaneShading.pdf.
WenminQin, 2020, Yang, Constructing a gridded direct normal irradiance dataset in China during 1981–2014, Renew. Sustain. Energy Rev., 131, 10.1016/j.rser.2020.110004