A prospect for computing in porous materials research: Very large fluid flow simulations

Journal of Computational Science - Tập 12 - Trang 62-76 - 2016
Keijo Mattila1,2, Tuomas Puurtinen1, Jari Hyväluoma3, Rodrigo Surmas4, Markko Myllys1, Tuomas Turpeinen1, Fredrik Robertsén5, Jan Westerholm5, Jussi Timonen1
1Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
2Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
3Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
4CENPES, Petrobras, 21941-915 Rio de Janeiro, Brazil
5Faculty of Science and Engineering, Åbo Akademi University, Joukahainengatan 3–5, FI-20520 Åbo, Finland

Tài liệu tham khảo

TOP500, Supercomputer Sites Lists of November 2013 and June 2015. http://www.top500.org/ (accessed 26.10.15). Hasegawa, 2011, First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer, 1 Ishiyama, 2012, 4.45 Pflops astrophysical N-body simulation on K computer: the gravitational trillion-body problem, 1 Jun, 2012, Peta-scale Lattice Quantum Chromodynamics on a Blue Gene/Q supercomputer, 1 Rossinelli, 2013, 11 PFLOP/s simulations of cloud cavitation collapse, 1 Staar, 2013, Taking a quantum leap in time to solution for simulations of high-Tc superconductors, 1 Bédorf, 2014, 24.77 Pflops on a gravitational tree-code to simulate the milky way galaxy with 18600 GPUs, 54 Heinecke, 2014, Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers, 3 Robertsén, 2015, Lattice Boltzmann simulations at petascale on multi-GPU systems with asynchronous data transfer and strictly enforced memory read alignment, 604 Jarvis, 2007, A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality, Eur. J. Soil Sci., 58, 523, 10.1111/j.1365-2389.2007.00915.x Benzi, 1992, The lattice Boltzmann equation: theory and applications, Phys. Rep., 222, 145, 10.1016/0370-1573(92)90090-M Aidun, 2010, Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439, 10.1146/annurev-fluid-121108-145519 Khan, 2012, 3D simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and LBE solver, J. Soils Sediments, 12, 86, 10.1007/s11368-011-0435-3 Hyväluoma, 2012, Using microtomography, image analysis and flow simulations to characterize soil surface seals, Comput. Geosci., 48, 93, 10.1016/j.cageo.2012.05.009 Nelson, 2009, Pore-throat sizes in sandstones, tight sandstones, and shales, AAPG Bull., 93, 329, 10.1306/10240808059 Song, 2000, Determining multiple length scales in rocks, Nature, 406, 178, 10.1038/35018057 Grader, 2009, Computations of porosity and permeability of sparic carbonate using multi-scale CT images, 1 Andrä, 2013, Digital rock physics benchmarks – Part I: Imaging and segmentation, Comput. Geosci., 50, 25, 10.1016/j.cageo.2012.09.005 Andrä, 2013, Digital rock physics benchmarks – Part II: Computing effective properties, Comput. Geosci., 50, 33, 10.1016/j.cageo.2012.09.008 Blunt, 2013, Pore-scale imaging and modelling, Adv. Water Resour., 51, 197, 10.1016/j.advwatres.2012.03.003 Balhoff, 2007, Coupling pore-scale networks to continuum-scale models of porous media, Comput. Geosci., 33, 393, 10.1016/j.cageo.2006.05.012 Chu, 2013, A multiscale method coupling network and continuum models in porous media II – Single- and two-phase flows, 161 Engquist, 2003, The heterogenous multiscale methods, Commun. Math. Sci., 1, 87, 10.4310/CMS.2003.v1.n1.a8 Engquist, 2007, Heterogeneous multiscale methods: a review, Commun. Comput. Phys., 2, 367 Chen, 2003, Extended Boltzmann kinetic equation for turbulent flows, Science, 301, 633, 10.1126/science.1085048 Stratford, 2005, Colloidal jamming at interfaces: a route to fluid-bicontinuous gels, Science, 309, 2198, 10.1126/science.1116589 Peters, 2010, Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P: full heart-circulation system at near red-blood cell resolution, 1 Rothman, 1998, Cellular-automaton fluids: a model for flow in porous media, Geophysics, 53, 509, 10.1190/1.1442482 Succi, 1989, Three-dimensional flows in complex geometries with the lattice Boltzmann method, Europhys. Lett., 10, 433, 10.1209/0295-5075/10/5/008 Cancelliere, 1990, The permeability of a random medium: comparison of simulation with theory, Phys. Fluids A, 2, 2085, 10.1063/1.857793 Qian, 1992, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 17, 479, 10.1209/0295-5075/17/6/001 Ginzburg, 2003, Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, 68, 066614, 10.1103/PhysRevE.68.066614 Philippi, 2006, From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models, Phys. Rev. E, 73, 056702, 10.1103/PhysRevE.73.056702 Cornubert, 1991, A Knudsen layer theory for lattice gases, Physica D, 47, 241, 10.1016/0167-2789(91)90295-K Bailey, 2009, Accelerating lattice Boltzmann fluid flow simulations using graphics processors, 550 Schulz, 2002, Parallelization strategies and efficiency of CFD computations in complex geometries using lattice Boltzmann methods on high-performance computers, 115 Wellein, 2006, On the single processor performance of simple lattice Boltzmann kernels, Comput. Fluids, 35, 910, 10.1016/j.compfluid.2005.02.008 Mattila, 2008, Comparison of implementations of the lattice-Boltzmann method, Comput. Math. Appl., 55, 1514, 10.1016/j.camwa.2007.08.001 Shet, 2013, Data structure and movement for lattice-based simulations, Phys. Rev. E, 88, 013314, 10.1103/PhysRevE.88.013314 Pohl, 2004, Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures, 21 Hilfer, 2011, High-precision synthetic computed tomography of reconstructed porous media, Phys. Rev. E, 84, 062301, 10.1103/PhysRevE.84.062301 Latief, 2010, Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone, Physica A, 389, 1607, 10.1016/j.physa.2009.12.006 Biswal, 1999, Quantitative analysis of experimental and synthetic microstructures for sedimentary rock, Physica A, 273, 452, 10.1016/S0378-4371(99)00248-4 Lindquist, 2000, Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res.: Solid Earth, 105, 21509, 10.1029/2000JB900208 Biswal, 2007, Stochastic multiscale model for carbonate rocks, Phys. Rev. E, 75, 061303, 10.1103/PhysRevE.75.061303 Vincent, 1991, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Trans. Pattern Anal. Mach. Intell., 13, 583, 10.1109/34.87344 Gonzalez, 2001 Lorensen, 1987, Marching cubes: a high resolution 3D surface construction algorithm, ACM SIGGRAPH Comput. Graph., 21, 163, 10.1145/37402.37422 Godenschwager, 2013, A framework for hybrid parallel flow simulations with a trillion cells in complex geometries, 1 Richa, 2010 Koponen, 1996, Tortuous flow in porous media, Phys. Rev. E, 54, 406, 10.1103/PhysRevE.54.406 Bruker Corporation, Skyscan 2211: multi-scale X-ray nano-CT system. http://www.bruker-microct.com/products/2211.htm (accessed 08.06.15). Uchida, 2009, Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans, Proc. Natl. Acad. Sci. U. S. A., 106, 19375, 10.1073/pnas.0906145106 Uchic, 2011, Serial sectioning methods for generating 3D characterization data of grain- and precipitate-scale microstructures, 31 Holzer, 2012, Review of FIB-tomography, 410 Sok, 2009, Pore scale characterization of carbonates at multiple scales: integration of MicroCT, BSEM and FIBSEM, 1 Wildenschild, 2013, X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., 51, 217, 10.1016/j.advwatres.2012.07.018 Wilson, 2006, Three-dimensional reconstruction of a solid-oxide fuel-cell anode, Nat. Mater., 5, 541, 10.1038/nmat1668 Puhka, 2012, Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells, Mol. Biol. Cell, 23, 2424, 10.1091/mbc.e10-12-0950 Ping, 2012, Effects of wettability alternation simulation by lattice Boltzmann in porous media Landry, 2014, Relative permeability of homogenous-wet and mixed-wet porous media as determined by pore-scale lattice Boltzmann modeling, Water Resour. Res., 50, 3672, 10.1002/2013WR015148 Cnudde, 2013, High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications, Earth Sci. Rev., 123, 1, 10.1016/j.earscirev.2013.04.003