Influence of Meniscectomy and Meniscus Replacement on the Stress Distribution in Human Knee Joint

Springer Science and Business Media LLC - Tập 36 - Trang 1335-1344 - 2008
Ashkan Vaziri1,2, Hamid Nayeb-Hashemi2, Arvinder Singh2, Bashir A. Tafti3
1School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
2Department of Mechanical, Industrial and Manufacturing Engineering, Northeastern University, Boston, USA
3Department of Surgery and Regenerative Medicine, Division of Plastic Surgery, Stanford University, Stanford, USA

Tóm tắt

Studying the mechanics of the knee joint has direct implications in understanding the state of human health and disease and can aid in treatment of injuries. In this work, we developed an axisymmetric model of the human knee joint using finite element method, which consisted of separate parts representing tibia, meniscus and femoral, and tibial articular cartilages. The articular cartilages were modeled as three separate layers with different material characteristics: top superficial layer, middle layer, and calcified layer. The biphasic characteristic of both meniscus and cartilage layers were included in the computational model. The developed model was employed to investigate several aspects of mechanical response of the knee joint under external loading associated with the standing posture. Specifically, we studied the role of the material characteristic of the articular cartilage and meniscus on the distribution of the shear stresses in the healthy knee joint and the knee joint after meniscectomy. We further employed the proposed computational model to study the mechanics of the knee joint with an artificial meniscus. Our calculations suggested an optimal elastic modulus of about 110 MPa for the artificial meniscus which was modeled as a linear isotropic material. The suggested optimum stiffness of the artificial meniscus corresponds to the stiffness of the physiological meniscus in the circumferential direction.

Tài liệu tham khảo

Adam C., F. Eckstein, S. Milz, E. Schulte, C. Becker, R. Putz. The distribution of cartilage thickness in the knee-joints of old-aged individuals – measurement by A-mode ultrasound. Clin. Biomech. 13:1–10, 1998. doi:10.1016/S0268-0033(97)85881-0 Adams S. B. Jr, M. A. Randolph, T. J. Gill. Tissue engineering for meniscus repair. J. Knee Surg. 18:25–30, 2005 Askew M. J., V. C. Mow. The biomechanical function of the collagen fibril ultrastructure of articular cartilage. J. Biomech. Eng. 100:105–115, 1978 Ateshian G. A., L. J. Soslowsky, V. C. Mow. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J. Biomech. Eng. 24:761–776, 1991. doi:10.1016/0021-9290(91)90340-S Atkinson T. S., R. C. Haut, N. J. Altiero. Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J. Biomech. Eng. 120:181–187, 1998. doi:10.1115/1.2798300 Aufderheide A. C., K. A. Athanasiou. Mechanical stimulation toward tissue engineering of the knee meniscus. Ann. Biomed. Eng. 32:1161–1174, 2004. doi:10.1114/B:ABME.0000036652.31658.f3 Baratz M. E., F. H. Fu, R. Mengato. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. Am. J. Sports Med. 14:270–274, 1986. doi:10.1177/036354658601400405 Barber F. A., R. G. Stone. Meniscal repair: an arthroscopic technique. J. Bone Joint Surg. 67-B:39–41, 1985 Barink M., A. van Kampen, M. de Waal Malefijt, and N. Verdonschot. A three-dimensional dynamic finite element model of the prosthetic knee joint: simulation of joint laxity and kinematics. In: Proceedings of the Institute of Mechanical Engineers H., vol. 219, 2005, pp. 415–424. doi:10.1243/095441105X34437 Buma P., N. N. Ramrattan, T. G. van Tienen, R. P. Veth. Tissue engineering of the meniscus. Biomaterials 25:1523–1532, 2004. doi:10.1016/S0142-9612(03)00499-X Caruntu D. I., M. S. Hefzy. 3-D anatomically based dynamic modeling of the human knee to include tibio-demoral and patello-femoral joints. J. Biomech. Eng. 126:44–53, 2004. doi:10.1115/1.1644565 Chern K. Y., W. B. Zhu, V. C. Mow. Anisotropic viscoelastic shear properties of meniscus. Adv. Bioeng. 15:105–106, 1989 Chiari C., U. Koller, R. Dorotka, C. Eder, R. Plasenzotti, S. Lang, L. Ambrosio, E. Tognana, E. Kon, D. Salter, S. Nehrer. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr. Cartil. 14:1056–1065, 2006. doi:10.1016/j.joca.2006.04.007 Cohen B., R. D. Gardner, and G. A. Ateshian. The influence of transverse isotropy on cartilage indentation behavior – a study of the human humeral head. In: Proc. Orthop. Res. Soc., vol. 18, Orthopaedic Research Society, 1993, p. 185. http://www.ors.org/web/Transactions.asp Cohen Z. A., D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, G. A. Ateshian. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 7:95–109, 1999. doi:10.1053/joca.1998.0165 Dehaven K. E., K. P. Black, H. J. Griffiths. Open meniscus repair: technique and two to nine year results. Am. J. Sports Med. 17:788–795, 1989. doi:10.1177/036354658901700612 Donahue T. L., M. L. Hull, M. M. Rashid, C. R. Jacobs. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124:273–280, 2002. doi:10.1115/1.1470171 Donzelli P. S., R. L. Spilker. A finite element investigation of solid phase transverse isotropy in contacting biphasic cartilage layers. Adv. Bioeng. 33:349–350, 1996 Eberhardt A. W., L. M. Keer, J. L. Lewis, V. Vithoontien. An analytical model of joint contact. J. Biomech. Eng. 33:407–413, 1990. doi:10.1115/1.2891204 Eberhardt A. W., J. L. Lewis, L. M. Keer. Contact of layered elastic spheres as a model of joint contact: effect of tangential load and friction. J. Biomech. Eng. 113:107–108, 1991. doi:10.1115/1.2894076 Eckstein F., M. Winzheimer, J. Hohe, K. H. Englmeier, M. Reiser. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthr. Cartil. 9:101–111, 2001. doi:10.1053/joca.2000.0365 Englund M. Meniscal tear – a feature of osteoarthritis. Acta Orthop. Scand. Suppl. 75:1–45, 2004. doi:10.1080/03008820410002048 Fernandez J. W., P. J. Hunter. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech. Model. Mech. 4:20–39, 2005. doi:10.1007/s10237-005-0072-0 Fithian, D. C., W. B. Zhu, A. Ratcliffe, M. Kelly, and V. C. Mow. Exponential law representation of tensile properties of human meniscus. In: Proceedings of the Institute of Mechanical Engineers Bioeng., Professional Engineering Publishing, 1989, pp. 85–90. http://www.pepublishing.com/ Garcia J. J., N. J. Altiero, R. C. Haut. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J. Biomech. Eng. 120:608–613, 1998. doi:10.1115/1.2834751 Griffin T. M., F. Guilak. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33:195–200, 2005. doi:10.1097/00003677-200510000-00008 Guccione A. A, D. T. Felson, J. J. Anderson, J. M. Anthony. The effects of specific medical conditions on the functional limitations of elders in the Framingham study. J. Public Health 84:351–358, 1994 Guilak F., B. Fermor, F. J. Keefe, V. B. Kraus, S. A. Olson, D. S. Pisetsky, L. A. Setton, J. B. Weinberg. The role of biomechanics and inflammation in cartilage injury and repair. Clin. Orthop. Relat. Res. 423:17–26, 2004. doi:10.1097/01.blo.0000131233.83640.91 Heijkants R. G., R. V. van Calck, J. H. De Groot, A. J. Pennings, A. J. Schouten, T. G. van Tienen, N. Ramrattan, P. Buma, R. P. Veth. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J. Mater. Sci. Mater. Med. 15:423–427, 2004. doi:10.1023/B:JMSM.0000021114.39595.1e Ihn J. C., M. W. Ahn, D. M. Kim. Photoelastic analysis of stress distribution on the tibiofemoral joint after meniscectomy. Orthopedics 15:1445–50, 1992 Kelly, P. A., and J. J. O’Connor. Transmission of rapidly applied loads through articular cartilage Part 1: uncracked cartilage. In: Proceedings of the Institute of Mechanical Engineers, vol. 210, Professional Engineering Publishing, 1996, pp. 27–37. doi:10.1243/PIME_PROC_1996_210_388_02. http://www.pepublishing.com/ Kelly D. J., P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38:1413–1422, 2005. doi:10.1016/j.jbiomech.2004.06.026 Kobayashi M. A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed. Mater. Eng. 14:505–515, 2004 Kobayashi M., Y. S. Chang, M. Oka. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243–3248, 2005. doi:10.1016/j.biomaterials.2004.08.028 Kobayashi M., J. Toguchida, M. Oka. Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24:639–647, 2003. doi:10.1016/S0142-9612(02)00378-2 Korkala O., E. Karaharju, M. Gronblad, K. Aalto. Articular cartilage after meniscectomy: rabbit knees studied with the scanning electron microscope. Acta Orthop. Scand. 55:273–277, 1984 Lanzer W. L., G. Komenda. Changes in articular cartilage after meniscectomy. Clin. Orthop. 252:41–48, 1990 Li G., J. Gil, A. Kanamori, S. L. Woo. A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 12:657–662, 1999. doi:10.1115/1.2800871 Li G., O. Lopez, H. Rubash. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J. Biomech. Eng. 123:341–346, 2001. doi:10.1115/1.1385841 MacConaill M. A. The movements of bones and joints: the synovial fluid and its assistants. J. Bone Joint Surg. 32-B:244–252, 1950 McDermott I. D., A. A. Amis. The consequence of meniscectomy. J. Bone Joint Surg. 88-B:1549–1556, 2006. doi:10.1302/0301-620X.88B12.18140 Mente P. L., J. L. Lewis. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12:637–647, 1994. doi:10.1002/jor.1100120506 Mow V. C., W. Zhu, A. Ratcliffe. Structure and function of articular cartilage and meniscus. in: Basic Orthopedic Biomechanics. Eds: V. C. Mow, W. C. Hayes. Raven Press, New York, 1991 Muensterer O. J., F. Eckstein, D. Hahn, R. Putz. Computer aided three dimensional assessment of knee-joint cartilage with magnetic resonance imaging. Clin. Biomech. 11:260–266, 1996. doi:10.1016/0268-0033(95)00069-0 Nambu S. N., G. Lewis. Influences of the temporal nature of the applied load and the tibial baseplate material on the stress distribution in a three-dimensional model of the human knee joint containing a prosthetic replacement. Biomed. Mater. Eng. 14:203–217, 2004 Oegema, T. R., Jr., R. J. Carpenter, F. Hofmeister, and R. C. Thompson Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 37:324–332, 1993. doi:10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K Owen J. R., J. S. Wayne. Influence of a superficial tangential zone over repairing cartilage defects: implications for tissue engineering. Biomech. Model. Mechanobiol. 5:102–110, 2006. doi:10.1007/s10237-006-0022-5 Peña, E., B. Calvo, M. A. Martínez, D. Palanca, and M. Doblaré. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin. Biomech. 20:498–507, 2005 Pena E., B. Calvo, D. A. Martinez, D. Palanca, M. Doblaré. Why lateral meniscectomy is more dangerous than medical meniscectomy. A finite element study. J. Orthop. Res. 24:1001–1010, 2006. doi:10.1002/jor.20037 Penrose J. M., G. M. Holt, M. Beaugonin, D. R. Hose. Development of an accurate three-dimensional finite element knee model. Comput. Methods Biomech. Biomed. Engin. 5:291–300, 2002. doi:10.1080/1025584021000009724 Renstrom P., R. J. Johnson. Anatomy and biomechanics of the menisci. Clin. Sports Med. 9:523–538, 1990 Rispoli D. M., M. D. Miller. Options in meniscal repair. Clin. Sports Med. 18:77–91, 1999. doi:10.1016/S0278-5919(05)70131-9 Stammen J. A., S. Williams, D. N. Ku, R. E. Guldberg. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22:799–806, 2001. doi:10.1016/S0142-9612(00)00242-8 Steadman J. R., W. G. Rodkey. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 21:515–525, 2005. doi:10.1016/j.arthro.2005.01.006 Sweigart M. A., K. A. Athanasiou. Towards tissue engineering of the knee meniscus. Tissue Eng. 7:111–129, 2001. doi:10.1089/107632701300062697 Tienen T. G., R. G. Heijkants, J. H. de Groot, A. J. Pennings, A. J. Schouten, R. P. Veth, P. Buma. Replacement of the knee meniscus by a porous polymer implant. Am. J. Sports Med. 34:64–71, 2006. doi:10.1177/0363546505280905 Tienen T. G., R. G. Heijkants, J. H. de Groot, A. J. Schouten, A. J. Pennings, R. P. Veth, P. Buma. Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J. Biomed. Mater. Res. B. Appl. Biomater. 76:389–396, 2006. doi:10.1002/jbm.b.30406 Whipple R. R., C. R. Wirth, V. C. Mow. Anisotropic and zonal variations in the tensile properties of the meniscus. Trans. Orthop. Res. Soc. 10:367, 1985 Wilson W., C. van Burken, C. van Donkelaar, P. Buma, R. van Rietbergen, H. Rik. Causes of mechanically induced collagen damage in articular cartilage. J. Orthop. Res. 24:220–228, 2006. doi:10.1002/jor.20027 Wilson W., C. van Donkelaar, R. van Rietbergen, R. Huiskes. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med. Eng. Phys. 27:810–826, 2005. doi:10.1016/j.medengphy.2005.03.004 Wilson W. C., B. V. Rietbergen, C. C. V. Donkelaar, R. Huiskes. Pathways of load induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J. Biomech. 63:845–851, 2003. doi:10.1016/S0021-9290(03)00004-6 Yao, J., A. D. Salo, M. B. McInnis, and L. A. Lerner. Finite element modeling of the knee joint contact pressures and compression to magnetic resonance imaging of the loaded knee. In: Proceedings of the Institute of Mechanical Engineers Cong. Exp., American Society of Mechanical Engineering, 2003 Zimmy M. L., D. J. Albright, E. Dabezies. Mechanoreceptors in the human medial meniscus. Acta Anat. 133:35–40, 1988