Non-destructive measurement of chloride ions concentration in concrete – A comparative analysis of limitations and prospects

Construction and Building Materials - Tập 174 - Trang 376-387 - 2018
Yawar Abbas1, Farhad Pargar2, Dessi A. Koleva2, Klaas van Breugel2, Wouter Olthuis1, Albert van den Berg1
1BIOS-Lab on a Chip Group, MESA+ Institute of Nanotechnology, MIRA Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, The Netherlands
2Faculty of Civil Engineering and Geosciences, Materials and Environment, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands

Tài liệu tham khảo

Cady, 1992, Predicting service life of concrete bridge decks subject to reinforcement corrosion, 328 R.B. Polder, G. van der Wegen, K. van Breugel, K. van Breugel, G. Ye, Y. Yuan, Guideline for service life design of structural concrete with regard to chloride induced corrosion-the approach in the Netherlands, in 2nd International Symposium on Service Life Design for Infrastructures, 2010, pp. 265–272. Glasser, 2008, Durability of concrete—degradation phenomena involving detrimental chemical reactions, Cem. Concr. Res., 38, 226, 10.1016/j.cemconres.2007.09.015 Andrade, 2001, Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry, Electrochim. Acta, 46, 3905, 10.1016/S0013-4686(01)00678-8 Arya, 1990, Factors influencing chloride-binding in concrete, Cem. Concr. Res., 20, 291, 10.1016/0008-8846(90)90083-A Yuan, 2009, Chloride binding of cement-based materials subjected to external chloride environment–a review, Constr. Build. Mater., 23, 1, 10.1016/j.conbuildmat.2008.02.004 Page, 1982 Montemor, 2003, Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques, Cem. Concr. Compos., 25, 491, 10.1016/S0958-9465(02)00089-6 Ann, 2007, Chloride threshold level for corrosion of steel in concrete, Corros. Sci., 49, 4113, 10.1016/j.corsci.2007.05.007 Basheer, 2001, Assessment of the durability of concrete from its permeation properties: a review, Constr. Build. Mater., 15, 93, 10.1016/S0950-0618(00)00058-1 Volz, 2008 Song, 2008, Factors influencing chloride transport in concrete structures exposed to marine environments, Cem. Concr. Compos., 30, 113, 10.1016/j.cemconcomp.2007.09.005 Hong, 1999, Effects of cyclic chloride exposure on penetration of concrete cover, Cem. Concr. Res., 29, 1379, 10.1016/S0008-8846(99)00073-3 Shi, 2012, Durability of steel reinforced concrete in chloride environments: an overview, Constr. Build. Mater., 30, 125, 10.1016/j.conbuildmat.2011.12.038 McCarter, 2011, Developments in performance monitoring of concrete exposed to extreme environments, J. Infrastruct. Syst., 18, 167, 10.1061/(ASCE)IS.1943-555X.0000089 Bastidas-Arteaga, 2012, Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments, Eng. Struct., 41, 50, 10.1016/j.engstruct.2012.03.011 Oh, 2007, Effects of material and environmental parameters on chloride penetration profiles in concrete structures, Cem. Concr. Res., 37, 47, 10.1016/j.cemconres.2006.09.005 Alonso, 2009, Analysis of the variability of chloride threshold values in the literature, Mater. Corros., 60, 631, 10.1002/maco.200905296 Sanchez-Silva, 2011, Life-cycle performance of structures subject to multiple deterioration mechanisms, Struct. Saf., 33, 206, 10.1016/j.strusafe.2011.03.003 Climent-Llorca, 1996, Embeddable Ag/AgCl sensors for in-situ monitoring chloride contents in concrete, Cem. Concr. Res., 26, 1157, 10.1016/0008-8846(96)00104-4 Atkins, 1996, Monitoring chloride concentrations in hardened cement pastes using ion selective electrodes, Cem. Concr. Res., 26, 319, 10.1016/0008-8846(95)00218-9 Haque, 1995, Free and water soluble chloride in concrete, Cem. Concr. Res., 25, 531, 10.1016/0008-8846(95)00042-B Glass, 1996, An investigation of experimental methods used to determine free and total chloride contents, Cem. Concr. Res., 26, 1443, 10.1016/0008-8846(96)00115-9 Hansen, 1986, Physical structure of hardened cement paste. A classical approach, Mater. Struct., 19, 423, 10.1007/BF02472146 Munshi, 2009 Glass, 1997, Neural network modelling of chloride binding, Mag. Concr. Res., 49, 323, 10.1680/macr.1997.49.181.323 Larsen, 1998, 337 J. Tritthart, Chloridinduzierte Betonstahlkorrosion (Chloride-induced corrosion of steel in concrete), in: Presented at the Schriftenreihe Strabenforschung des BMfwA, Vienna, 1988. Byfors, 1990 Suryavanshi, 1998, Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride, Cem. Concr. Compos., 20, 263, 10.1016/S0958-9465(98)00018-3 Suryavanshi, 1995, The binding of chloride ions by sulphate resistant Portland cement, Cem. Concr. Res., 25, 581, 10.1016/0008-8846(95)00047-G Ramachandran, 2000 U. Angst, Chloride Induced Reinforcement Corrosion in Concrete, Concept of Critical Chloride Content—Methods and Mechanisms, (Doctoral Thesis), vol. 113, pp. 978–982, 2011. Angst, 2009, Critical chloride content in reinforced concrete—a review, Cem. Concr. Res., 39, 1122, 10.1016/j.cemconres.2009.08.006 C1152/C1152M-04e1,, 2004 Alonso, 2002, Chloride threshold dependence of pitting potential of reinforcements, Electrochim. Acta, 47, 3469, 10.1016/S0013-4686(02)00283-9 Angst, 2010, Potentiometric determination of the chloride ion activity in cement based materials, J. Appl. Electrochem., 40, 561, 10.1007/s10800-009-0029-6 Neville, 1995, Chloride attack of reinforced concrete: an overview, Mater. Struct., 28, 63, 10.1007/BF02473172 Torres-Luque, 2014, Non-destructive methods for measuring chloride ingress into concrete: state-of-the-art and future challenges, Constr. Build. Mater., 68, 68, 10.1016/j.conbuildmat.2014.06.009 Marriaga, 2009, Effect of the non-linear membrane potential on the migration of ionic species in concrete, Electrochim. Acta, 54, 2761, 10.1016/j.electacta.2008.11.031 Bastidas-Arteaga, 2010 Papadakis, 2000, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress, Cem. Concr. Res., 30, 291, 10.1016/S0008-8846(99)00249-5 N. Nordtest, Build 208: Concrete, Hardened: Chloride Content by Volhard Titration, Nordtest (Ed.), 1996. Al-Hussaini, 1990, The effect of chloride ion source on the free chloride ion percentages in OPC mortars, Cem. Concr. Res., 20, 739, 10.1016/0008-8846(90)90007-K Junsomboon, 2008, Determination of chloride in admixtures and aggregates for cement by a simple flow injection potentiometric system, Talanta, 76, 365, 10.1016/j.talanta.2008.03.006 C1218,, 2008 Castellote, 2001, Alkaline leaching method for the determination of the chloride content in the aqueous phase of hardened cementitious materials, Cem. Concr. Res., 31, 233, 10.1016/S0008-8846(00)00449-X Arya, 1990, An assessment of four methods of determining the free chloride content of concrete, Mater. Struct., 23, 319, 10.1007/BF02472710 S. Bonnet, F. SCHOEFS, J. Ricardo, M. Salta, Effect of error measurement of chloride profiles on reliability assessment, in: ICOSSAR'09, 2009. Sheils, 2010, Development of a two-stage inspection process for the assessment of deteriorating infrastructure, Reliab. Eng. Syst. Saf., 95, 182, 10.1016/j.ress.2009.09.008 Elsener, 2003, Non destructive determination of the free chloride content in cement based materials, Mater. Corros., 54, 440, 10.1002/maco.200390095 Duffó, 2009, Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures, Electrochim. Acta, 54, 1010, 10.1016/j.electacta.2008.08.025 Hewlett, 2003 Elakneswaran, 2009, Electrokinetic potential of hydrated cement in relation to adsorption of chlorides, Cem. Concr. Res., 39, 340, 10.1016/j.cemconres.2009.01.006 De Vera, 2010, Determination of the selectivity coefficient of a chloride ion selective electrode in alkaline media simulating the cement paste pore solution, J. Electroanal. Chem., 639, 43, 10.1016/j.jelechem.2009.11.010 M. Molina, Zerstörungsfreie Erfassung der gelösten Chloride im Beton, Diss. Techn. Wiss ETH Zürich, Nr. 10315, 1993. Ref.: H. Böhni, Korref.: FH Wittmann, Korref.: B. Elsener, 1993. Atkins, 2001, Sources of error in using silver/silver chloride electrodes to monitor chloride activity in concrete, Cem. Concr. Res., 31, 1207, 10.1016/S0008-8846(01)00544-0 Abbas, 2014, No more conventional reference electrode: transition time for determining chloride ion concentration, Anal. Chim. Acta, 821, 81, 10.1016/j.aca.2014.03.013 Bakker, 2008, Beyond potentiometry: robust electrochemical ion sensor concepts in view of remote chemical sensing, Talanta, 75, 629, 10.1016/j.talanta.2007.10.021 Abbas, 2013, A chronopotentiometric approach for measuring chloride ion concentration, Sensors Actuators B: Chemical, 188, 433, 10.1016/j.snb.2013.07.046 Bard, 2001 Rajabipour, 2005, Procedure to interpret electrical conductivity measurements in cover concrete during rewetting, J. Mater. Civ. Eng., 17, 586, 10.1061/(ASCE)0899-1561(2005)17:5(586) C. Larsen, E. Sellevold, F. Askeland, J. Østvik, O. Vennesland, Electrical resistivity of concrete part II: Influence of moisture content and temperature, in: 2nd International symposium on advances in concrete through science and engineering. Quebec, Canada, 2006. Polder, 2001, Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation, Constr. Build. Mater., 15, 125, 10.1016/S0950-0618(00)00061-1 McPolin, 2005, Obtaining progressive chloride profiles in cementitious materials, Constr. Build. Mater., 19, 666, 10.1016/j.conbuildmat.2005.02.015 Basheer, 2002, Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration, Cem. Concr. Compos., 24, 437, 10.1016/S0958-9465(01)00075-0 McCarter, 2009, Electrode configurations for resistivity measurements on concrete, ACI Mater. J., 106 Sengul, 2014, Use of electrical resistivity as an indicator for durability, Constr. Build. Mater., 73, 434, 10.1016/j.conbuildmat.2014.09.077 Vedalakshmi, 2008, Determination of diffusion coefficient of chloride in concrete: an electrochemical impedance spectroscopic approach, Mater. Struct., 41, 1315, 10.1617/s11527-007-9330-1 Vedalakshmi, 2009, Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient, Corros. Sci., 51, 1299, 10.1016/j.corsci.2009.03.017 Li, 2004, Recent applications of fiber optic sensors to health monitoring in civil engineering, Eng. Struct., 26, 1647, 10.1016/j.engstruct.2004.05.018 Wolfbeis, 2008, Fiber-optic chemical sensors and biosensors, Anal. Chem., 80, 4269, 10.1021/ac800473b Tang, 2007, Measurement of chloride-ion concentration with long-period grating technology, Smart Mater. Struct., 16, 665, 10.1088/0964-1726/16/3/013 McPolin, 2009, Development and longer term in situ evaluation of fiber-optic sensors for monitoring of structural concrete, IEEE Sensors J., 9, 1537, 10.1109/JSEN.2009.2021796 Merzbacher, 1996, Fiber optic sensors in concrete structures: a review, Smart Mater. Struct., 5, 196, 10.1088/0964-1726/5/2/008 Fuhr, 1998, Embedded fiber optic sensors for bridge deck chloride penetration measurement, Opt. Eng., 37, 1221, 10.1117/1.601958 Laferrière, 2008, A new system for early chloride detection in concrete, Smart Mater. Struct., 17, 045017, 10.1088/0964-1726/17/4/045017 Lam, 2009, Optical fiber refractive index sensor for chloride ion monitoring, IEEE Sensors J., 9, 525, 10.1109/JSEN.2009.2016597 Wilsch, 2005, Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy, Constr. Build. Mater., 19, 724, 10.1016/j.conbuildmat.2005.06.001 Gehlen, 2009, Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range, Spectrochim. Acta, Part B, 64, 1135, 10.1016/j.sab.2009.07.021 Gondal, 2009, Determination of chloride content in different types of cement using laser-induced breakdown spectroscopy, Spectrosc. Lett., 42, 171, 10.1080/00387010902827668 B. Savija, J. Pacheco Farias, E. Schlangen, S. Millar, T. Eichler, G. Wilsch, Chloride ingress in cracked concrete studied using Laser Induced Breakdown Spectroscopy, in: AMS 14: Proceedings of the 1st Ageing of Materials & Structures Conference, Delft, The Netherlands, 26–28 May 2014, 2014. Šavija, 2014, Chloride ingress in cracked concrete: a laser induced breakdown spectroscopy (LIBS) study, J. Adv. Concr. Technol., 12, 425, 10.3151/jact.12.425 Wilsch, 2003, Laser-induced breakdown spectroscopy for on-site determination of chloride in concrete Robert, 1998, Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation, J. Appl. Geophys., 40, 89, 10.1016/S0926-9851(98)00009-3 Tripathi, 2013, Non-destructive inspection of chloride ion in concrete structures using attenuated total reflection of millimeter waves, J. Infrared Millimeter Terahertz Waves, 34, 181, 10.1007/s10762-013-9955-9 Kohri, 2010, Application of a near-infrared spectroscopic technique to estimate the chloride ion content in mortar deteriorated by chloride attack and carbonation, J. Adv. Concr. Technol., 8, 15, 10.3151/jact.8.15 Tripathi, 2012, Measurement of chloride ion concentration in concrete structures using terahertz time domain spectroscopy (THz-TDS), Corros. Sci., 62, 5, 10.1016/j.corsci.2012.05.005 Slichter, 2013 Yun, 2004, Detection of free chloride in concrete by NMR, Cem. Concr. Res., 34, 379, 10.1016/j.cemconres.2003.08.020 Van Der Heijden, 2007, Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling, Cem. Concr. Res., 37, 894, 10.1016/j.cemconres.2007.03.004 Cano, 2002, Magnetic resonance imaging of 1 H, 23 Na, and 35 Cl penetration in Portland cement mortar, Cem. Concr. Res., 32, 1067, 10.1016/S0008-8846(02)00747-0 Petković, 2010, Moisture and salt transport in three-layer plaster/substrate systems, Constr. Build. Mater., 24, 118, 10.1016/j.conbuildmat.2009.08.014 Proverbio, 1997, Evaluation of chloride content in concrete by X-ray fluorescence, Cem. Concr. Res., 27, 1213, 10.1016/S0008-8846(97)00108-7 Sudbrink, 2012, Applications of micro X-ray fluorescence in concrete, Microsc. Microanal., 18, 952, 10.1017/S1431927612006617 Makarychev-Mikhailov, 2004, Pulstrodes: triple pulse control of potentiometric sensors, J. Am. Chem. Soc., 126, 10548, 10.1021/ja047728q Angst, 2009, Diffusion potentials as source of error in electrochemical measurements in concrete, Mater. Struct., 42, 365, 10.1617/s11527-008-9387-5 McCarter, 2004, Sensor systems for use in reinforced concrete structures, Constr. Build. Mater., 18, 351, 10.1016/j.conbuildmat.2004.03.008 Angst, 2009, Detecting critical chloride content in concrete using embedded ion selective electrodes–effect of liquid junction and membrane potentials, Mater. Corros., 60, 638, 10.1002/maco.200905280 Mehta, 2006, Microstructure and properties of hardened concrete, Concr. Microstr. Proper. Mater., 41 Liebsch, 2001, Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing, Anal. Chem., 73, 4354, 10.1021/ac0100852 McDonagh, 2008, Optical chemical sensors, Chem. Rev., 108, 400, 10.1021/cr068102g