Legacy nitrate and trace metal (Mn, Ni, As, Cd, U) pollution in anaerobic groundwater: Quantifying potential health risk from “the other nitrate problem”

Applied Geochemistry - Tập 139 - Trang 105254 - 2022
Thomas Riedel1, Christine Kübeck1, Markus Quirin2
1IWW Water Centre, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
2Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN), Alva-Myrdal-Weg 2, 37085, Göttingen, Germany

Tài liệu tham khảo

Appelo, 2005 Ayotte, 2011, Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells, Appl. Geochem., 26, 747, 10.1016/j.apgeochem.2011.01.033 Banning, 2017, Ex situ groundwater treatment triggering the mobilization of geogenic uranium from aquifer sediments, Sci. Total Environ., 587, 371, 10.1016/j.scitotenv.2017.02.162 Blicher-Mathiesen, 1998, Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon, J. Hydrol., 208, 16, 10.1016/S0022-1694(98)00142-5 BMEL, 2020 Böhlke, 2002, Groundwater recharge and agricultural contamination, Hydrogeol. J., 10, 53 Böhlke, 2002, Denitrification beneath the recharge area and discharge area of a transient agricultural ground-water nitrate plume in Minnesota, Water Resour. Res., 38, 1105, 10.1029/2001WR000663 Böttcher, 1990, Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol., 114, 413, 10.1016/0022-1694(90)90068-9 Bradley, 1992, Carbon limitation of denitrification rates in an anaerobic groundwater system, Environ. Sci. Technol., 26, 2377, 10.1021/es00036a007 Broers, 2021, Paleoclimate signals and groundwater age distributions from 39 public water works in The Netherlands; Insights from noble gases and carbon, hydrogen and oxygen isotope tracers, Water Resour. Res., 57, 10.1029/2020WR029058 Brunet, 1996, Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments, FEMS Microbiol. Ecol., 21, 131, 10.1111/j.1574-6941.1996.tb00340.x Burgin, 2008, NO3-driven SO42- production in freshwater ecosystems: implications for N and S cycling, Ecosystems, 11, 908, 10.1007/s10021-008-9169-5 Canfield, 2009, Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away, Geobiology, 7, 385, 10.1111/j.1472-4669.2009.00214.x Castaldo, 2021, Effect of groundwater age and recharge source on nitrate concentrations in domestic wells in the san Joaquin valley, Environ. Sci. Technol. 2021, 55, 2265, 10.1021/acs.est.0c03071 Chapelle, 1995, Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems, Water Resour. Res., 31, 359, 10.1029/94WR02525 Charlet, 2006, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster, Elements, 2, 91, 10.2113/gselements.2.2.91 Clague, 2019, The influence of unsaturated zone drainage status on denitrification and the redox succession in shallow groundwater, Sci. Total Environ., 660, 1232, 10.1016/j.scitotenv.2018.12.383 Clay, 1996, Temporal variability of organic C and nitrate in a shallow aquifer, Water Res., 30, 559, 10.1016/0043-1354(95)00198-0 Darling, 2006, The hydrogeochemistry of methane: evidence from English groundwaters, Chem. Geol., 229, 293, 10.1016/j.chemgeo.2005.11.003 Degnan, 2020, Time scales of arsenic variability and the role of high-frequency monitoring at three water-supply wells in New Hampshire, USA, Sci. Total Environ., 709, 135946, 10.1016/j.scitotenv.2019.135946 Dentener, 2006, Nitrogen and Sulphur Deposition on regional and global scales: a multi-model evaluation, Global Biogeochem. Cycles, 20, GB4003, 10.1029/2005GB002672 Dietrich, 2020, A review: the challenge, consensus, and confusion of describing odors and tastes in drinking water, Sci. Total Environ., 713, 135061, 10.1016/j.scitotenv.2019.135061 Dogramaci, 2017, Hydrochemical and stable isotope indicators of pyrite oxidation in carbonate-rich environment; the Hamersley Basin, Western Australia, J. Hydrol., 545, 288, 10.1016/j.jhydrol.2016.12.009 Engardt, 2017, Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations, Tellus B, 69, 1328945, 10.1080/16000889.2017.1328945 Fakhreddine, 2021, Mobilization of arsenic and other naturally occurring contaminants during managed aquifer recharge: a critical review, Environ. Sci. Technol., 55, 2208, 10.1021/acs.est.0c07492 Gooddy, 2002, Redox-driven changes in pore water chemistry in the unsaturated zone of the chalk aquifer beneath unlined cattle slurry lagoons, Appl. Geochem., 17, 903, 10.1016/S0883-2927(02)00055-0 Hamer, 2020, Manganese (Mn) concentrations and the mn-fe relationship in shallow groundwater: implications for groundwater monitoring, Soil Sys., 4, 1 Hansen, 2014, A concept for estimating depth of the redox interface for catchment-scale nitrate modelling in a till area in Denmark, Hydrogeol. J., 22, 1639, 10.1007/s10040-014-1152-y Hansen, 2017, Groundwater nitrate response to sustainable nitrogen management, Sci. Rep., 7, 8566, 10.1038/s41598-017-07147-2 Haugen, 2021, Groundwater development leads to decreasing arsenic concentrations in the San Joaquin Valley, California, Sci. Total Environ., 77, 145223, 10.1016/j.scitotenv.2021.145223 Hayakawa, 2013, Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem, J. Geophys. Res. Biogeosci., 118, 639, 10.1002/jgrg.20060 Heaton, 1981, ″Excess air″ in groundwater, J. Hydrol., 50, 201, 10.1016/0022-1694(81)90070-6 Hernández-del Amo, 2018, Isotope and microbiome data provide complementary information to identify natural nitrate attenuation processes in groundwater, Sci. Total Environ., 613, 579, 10.1016/j.scitotenv.2017.09.018 Huerta-Diaz, 1992, Pyritization of trace metals in anoxic marine sediments, Geochem. Cosmochim. Acta, 56, 2681, 10.1016/0016-7037(92)90353-K He, 2010, Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of Desulfovibrio vulgaris, ISME J., 4, 1386, 10.1038/ismej.2010.59 Hill, 2000, Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon, Biogeochemistry, 51, 193, 10.1023/A:1006476514038 Houben, 2017, Terrestrial sedimentary pyrite as a potential source of trace metal release to groundwater – a case study from the Emsland, Germany, Appl. Geochem., 76, 99, 10.1016/j.apgeochem.2016.11.019 Imseng, 2018, Fate of Cd in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation and soil-plant cycling, Environ. Sci. Technol., 52, 1919, 10.1021/acs.est.7b05439 Jankowski, 2020 Jenneman, 1986, Effect of nitrate on biogenic sulfide production, Appl. Environ. Microbiol., 51, 1205, 10.1128/aem.51.6.1205-1211.1986 Juncher Jørgensen, 2009, Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment, Environ. Sci. Technol., 43, 4851, 10.1021/es803417s Kaiser, 2012, Cycling downwards-dissolved organic matter in soils, Soil Biol. Biochem., 52, 29, 10.1016/j.soilbio.2012.04.002 Kana, 1994, Membrane inlet mass-spectrometer for rapid high precision determination of N2, O2 and Ar in environmental water samples, Anal. Chem., 66, 4166, 10.1021/ac00095a009 Kaown, 2009, Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea), Agric. Ecosyst. Environ., 132, 223, 10.1016/j.agee.2009.04.004 Kerndorff, 1980, Sorption of metals on humic acid, Geochem. Cosmochim. Acta, 44, 1701, 10.1016/0016-7037(80)90221-5 Klüber, 1998, Effects of nitrate, ni-trite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil, FEMS Microbiol. Ecol., 25, 301, 10.1016/S0168-6496(98)00011-7 Kubier, 2019, Cadmium in groundwater − A synopsis based on a large hydrogeochemical data set, Sci. Total Environ., 689, 831, 10.1016/j.scitotenv.2019.06.499 Kumar, 2020, Regulation of groundwater arsenic concentrations in the Ravi, Beas, and Sutlej floodplains of Punjab, India, Geochem. Cosmochim. Acta, 276, 384, 10.1016/j.gca.2020.03.003 Krzywinski, 2014, Points of significance. Comparing samples—part II, Nat. Methods, 11, 355, 10.1038/nmeth.2900 Landwirtschaftskammer Niedersachsen, 2020 Larsen, 1997, Nickel mobilization in a groundwater well field: release by pyrite oxidation and desorption from manganese oxides, Environ. Sci. Technol., 31, 2589, 10.1021/es9610794 Lee, 2021, Globally prevalent land nitrogen memory amplifies water pollution following drought years, Environ. Res. Lett., 16, 10.1088/1748-9326/abd1a0 Liesch, 2015, Uranium in groundwaterd fertilizers versus geogenic sources, Sci. Total Environ., 536, 981e995, 10.1016/j.scitotenv.2015.05.133 Macedo, 2009, Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design, Talanta, 80, 10.1016/j.talanta.2009.08.025 Margalef-Marti, 2020, Nitrate and nitrite reduction by ferrous iron minerals in polluted groundwater: isotopic characterization of batch experiments, Chem. Geol., 548, 119691, 10.1016/j.chemgeo.2020.119691 Mastrocicco, 2019, Direct measurement of dissolved dinitrogen to refine reactive modelling of denitrification in agricultural soils, Sci. Total Environ., 647, 134, 10.1016/j.scitotenv.2018.07.428 McBride, 2001, Heavy metal content of selected fertilizers and dairy Manures as determined by ICPeMS, Commun. Soil Sci. Plant Anal., 32, 139, 10.1081/CSS-100102999 McCallum, 2008, Mixing-induced groundwater denitrification beneath a manured field in southern Alberta, Canada, Appl. Geochem., 23, 2146, 10.1016/j.apgeochem.2008.03.018 McCarty, 1992, Availability of organic carbon for denitrification of nitrate in subsoils, Biol. Fertil. Soils, 14, 219, 10.1007/BF00346064 McMahon, 2008, Redox processes and water quality of selected principal aquifer systems, Ground Water, 46, 259, 10.1111/j.1745-6584.2007.00385.x McMahon, 2019, Elevated manganese concentrations in United States groundwater, role of land surface−soil−aquifer connections, Environ. Sci. Technol., 53, 29, 10.1021/acs.est.8b04055 Müller, 2002, Adsorption of trace elements on pyrite surfaces in sulfidic mine tailings from Kristineberg (Sweden) a few years after remediation, Sci. Total Environ., 298, 1, 10.1016/S0048-9697(02)00141-9 Neil, 2014, Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge, Environ. Sci. Technol., 48, 4395, 10.1021/es405119q Nishio, 1981, N2/Ar and denitrification in Tama estuary sediments, Geomicrobiol. J., 2, 193, 10.1080/01490458109377763 Obenhuber, 1991, Reduction of nitrate in aquifer microcosms by carbon additions, J. Environ. Qual., 20, 255, 10.2134/jeq1991.00472425002000010041x Pabich, 2001, Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA, Biogeochemistry, 55, 247, 10.1023/A:1011842918260 Postma, 2007, Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling, Geochem. Cosmochim. Acta, 71, 5054, 10.1016/j.gca.2007.08.020 Postma, 2012, Groundwater arsenic concentrations in Vietnam controlled by sediment age, Nat. Geosci., 5, 656, 10.1038/ngeo1540 Postma, 2019, PlotsOfData - a web app for visualizing data together with their summaries, PLoS Biol., 17, 10.1371/journal.pbio.3000202 Pena, 2010, Mechanisms of nickel sorption by a bacteriogenic birnessite, Geochem. Cosmochim. Acta, 74, 3076, 10.1016/j.gca.2010.02.035 Quirin, 2020 Ramachandran, 2021, Shallow groundwater manganese merits deeper consideration, Environ. Sci. Technol., 55, 3465, 10.1021/acs.est.0c08065 Riedel, 2015, Leaching of soil-derived major and trace elements in an arable topsoil after the addition of biochar, Eur. J. Soil Sci., 66, 823, 10.1111/ejss.12256 Riedel, 2018, Uranium in groundwater - a synopsis based on a large hydrogeochemical data set, Water Res., 129, 29, 10.1016/j.watres.2017.11.001 Riedel, 2019, Temperature-associated changes in groundwater quality, J. Hydrol., 572, 206, 10.1016/j.jhydrol.2019.02.059 Rotiroti, 2021, Overlapping redox zones control arsenic pollution in Pleistocene multi-layer aquifers, the Po Plain (Italy), Sci. Total Environ., 758, 143646, 10.1016/j.scitotenv.2020.143646 Roy, 1986, Competitive coefficients for the adsorption of arsenate, molybdate, and phosphate mixtures by soils, Soil Sci. Soc. Am. J., 50, 1176, 10.2136/sssaj1986.03615995005000050017x Schloemer, 2018, Spatial distribution and temporal variation of methane, ethane and propane background levels in shallow aquifers – a case study from Lower Saxony (Germany), J. Hydrol.: Reg. Stud., 19, 57 Schnug, 2013, Fertilizer-derived uranium and its threat to human health, Environ. Sci. Technol., 47, 2433, 10.1021/es4002357 Seitzinger, 2006, Denitrification across landscapes and waterscapes: a synthesis, Ecol. Appl., 16, 2064, 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 Senko, 2002, In-situ evidence for uranium immobilization and remobilization, Environ. Sci. Technol., 36, 1491e1496, 10.1021/es011240x Smedley, 2002, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17, 517, 10.1016/S0883-2927(02)00018-5 Smidt, 2011, Cadmium and uranium in German and Brazilian phosphorous fertilizers, 167 Smith, 1991, Denitrification in nitrate contaminated groundwater: occurrence in steep vertical geochemical gradients, Geochem. Cosmochim. Acta, 55, 1815, 10.1016/0016-7037(91)90026-2 Smith, 2017, Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer, Geochem. Cosmochim. Acta, 196, 102, 10.1016/j.gca.2016.09.025 Straub, 1996, Anaerobic, nitrate dependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol., 62, 1458, 10.1128/aem.62.4.1458-1460.1996 Stumm, 1995 Tesoriero, 2015, Predicting redox conditions in groundwater at a regional scale, Environ. Sci. Technol., 49, 9657, 10.1021/acs.est.5b01869 Tesoriero, 2019, Using age tracers and decadal sampling to discern trends in nitrate, arsenic, and uranium in groundwater beneath irrigated cropland, Environ. Sci. Technol., 53, 14152, 10.1021/acs.est.9b03459 Thiel, 2019, Pyrite formation from FeS and H2S is mediated through microbial redox activity, Proc. Natl. Acad. Sci. Unit. States Am., 116, 6897, 10.1073/pnas.1814412116 Tiedje, 1988, Ecology of denitrification and dissimilatory nitrate reduction to ammonium, 179 Vaclavkova, 2014, The importance of microbial iron sulfide oxidation for nitrate depletion in anoxic Danish sediments, Aquat. Geochem., 20, 419, 10.1007/s10498-014-9227-x Van Beek, 1989, The effects of manure spreading and acid deposition upon groundwater quality in Vierlingsbeek, The Netherlands, Int. Assoc. Hydrol Sci. Publ., 185, 155 Visser, 2013, Groundwater age distributions at a publicdrinking water supply well field derived from multiple age tracers (85Kr,3H/3He, and39Ar), Water Resour. Res., 49, 7778, 10.1002/2013WR014012 Vogel, 1981, Gaseous nitrogen as evidence for denitrification in groundwater, J. Hydrol., 50, 191, 10.1016/0022-1694(81)90069-X Waterhouse, 2021, Influence of agricultural managed aquifer recharge (AgMAR) and stratigraphic heterogeneities on nitrate reduction in the deep subsurface, Water Resour. Res., 57, 10.1029/2020WR029148 Welch, 2000, Arsenic in ground water of the United States: occurrence and geochemistry, Ground Water, 38, 589, 10.1111/j.1745-6584.2000.tb00251.x Weiss, 1970, The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Res., 17, 721 Weymann, 2008, Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation, Biogeosciences, 5, 1215, 10.5194/bg-5-1215-2008 Wherry, 2021, Factors affecting nitrate concentrations in stream base flow, Environ. Sci. Technol., 55, 902, 10.1021/acs.est.0c02495 Wilson, 1990, Dissolved gas evidence for denitrification in the Lincolnshire limestone groundwaters, eastern England, J. Hydrol., 113, 51, 10.1016/0022-1694(90)90166-U Wriedt, 2019, Regionalisierte Darstellung der Nitratbelastung im Grundwasser Niedersachsens [Mapping groundwater nitrate concentrations in Lower Saxony], Grundwasser, 24, 27, 10.1007/s00767-019-00415-0 Zhang, 2009, Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer, Geochem. Cosmochim. Acta, 73, 6716, 10.1016/j.gca.2009.08.026