Affine equivariant multivariate rank methods

Journal of Statistical Planning and Inference - Tập 114 - Trang 161-185 - 2003
S. Visuri1, E. Ollila2, V. Koivunen2, J. Möttönen3, H. Oja2
1Signal Processing Laboratory, Helsinki University of Technology, P.O. Box 3000, FIN-02015 HUT, Finland
2Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
3Singal Processing Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland

Tài liệu tham khảo

Anderson, 1984 Anderson, 1999, Asymptotic theory for canonical correlation analysis, J. Multivariate Anal., 70, 1, 10.1006/jmva.1999.1810 Baksalary, 1992, Canonical correlations associated with symmetric reflexive generalized inverses of the dispersion matrix, Linear Algebra Appl., 176, 61, 10.1016/0024-3795(92)90210-2 Brown, B.M., Hettmansperger, T.P., Möttönen, J., Oja, H., 1997. Rank plots in the affine invariant case In: Dodge, Y. (Ed.), L1-Statistical Procedures and Related Topics, Lecture notes—Monograph series, Institute of Mathematical Statistics, Hayward, CA, pp. 351–362. Croux, 1999, Influence function and efficiency of the minimum covariance determinant scatter matrix estimator, J. Multivariate Anal., 71, 161, 10.1006/jmva.1999.1839 Croux, 2000, Principal component analysis based on robust estimators of the covariance and correlation matrix, Biometrika, 87, 603, 10.1093/biomet/87.3.603 Hettmansperger, 1998 Hettmansperger, 1992, On multivariate notions of sign and rank, 267 Hettmansperger, 1997, Multivariate affine invariant one-sample signed-rank tests, J. Amer. Statist. Assoc., 92, 1591, 10.2307/2965430 Hettmansperger, 1998, Affine invariant multivariate rank tests for several samples, Statist. Sinica, 8, 765 Hettmansperger, 1999, Discussion of ‘Multivariate analysis by data depth, Ann. Statist., 3, 845 Isogai, 1985, Some extension of Haldane's multivariate median and its application, Ann. Inst. Statist. Math., 37, 289, 10.1007/BF02481098 Jewell, 1983, Canonical correlations of past and future for time series, Ann. Statist., 11, 837, 10.1214/aos/1176346250 Koshevoy, G.A., 2002. Lift-zonoid and multivariate depths. In: Dutter, R., Filzmoser, P., Gather, U., Rousseeuw, P.J. (Eds.), Developments in Robust Statistics, Physica Verlag, Heidelberg, 194–202. Liu, 1999, Multivariate analysis by data depth, Ann. Statist., 3, 783 Malkovich, 1973, On tests for multivariate normality, J. Amer. Statist. Assoc., 68, 176, 10.2307/2284163 Marden, 1999, Some robust estimates of principal components, Statist. Probab. Lett., 43, 349, 10.1016/S0167-7152(98)00272-7 Mardia, 1970, Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519, 10.1093/biomet/57.3.519 Mardia, 1974, Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies, Sankhya B, 36, 115 Mardia, 1979 Möttönen, 1995, Multivariate spatial sign and rank methods, J. Nonparam. Statist., 5, 201, 10.1080/10485259508832643 Möttönen, 1998, On the efficiency of affine invariant multivariate rank tests, J. Multivariate Anal., 66, 108, 10.1006/jmva.1998.1740 Oja, 1983, Descriptive statistics for multivariate distributions, Statist. Probab. Lett., 1, 327, 10.1016/0167-7152(83)90054-8 Oja, 1999, Affine invariant multivariate sign and rank tests and corresponding estimates, Scand. J. Statist., 26, 319, 10.1111/1467-9469.00152 Ollila, E., Croux, C., Oja, H., 2002a. Influence function and asymptotic efficiency of the affine equivariant rank covariance matrix. Conditionally accepted. http://www.cc.jyu.fi/~{}esaolli/ Ollila, 2002, Estimates of the regression coefficients based on the sign covariance matrix, J. Royal Statist. Soc., Ser. B, 447 Ollila, E., Hettmansperger, T.P., Oja, H., 2002c. Affine equivariant multivariate sign methods. Conditionally accepted. http://www.cc.jyu.fi/~{}esaolli Ollila, E., Oja, H., Croux, C., 2002d. The affine equivariant sign covariance matrix: asymptotic behaviour and efficiencies. Conditionally accepted. http://www.cc.jyu.fi/~{}esaolli/ Ollila, E., Koivunen, V., Oja, H., 2003. Estimates of the regression coefficients based on the rank covariance matrix. J. Amer. Statist. Ass., in print. Puntanen, 1987, On the relative goodness of ordinary least squares estimation in the general linear model. Dissertation Thesis, Acta Univ. Tamper. Ser. A, 216 Puri, 1971 Rao, 1973 Seber, 1984 Serfling, 1980 Visuri, S., 2001. Array and Multichannel Signal Processing Using Nonparametric Statistics. D.Sc. Thesis, Helsinki University of Technology. http://www.hut.fi/Yksikot/Kirjasto/Diss/2001/isbn951225364X/ Visuri, 2000, Sign and rank covariance matrices, J. Statist. Plann. Inference, 91, 557, 10.1016/S0378-3758(00)00199-3