Potential of Azadirachta indica as a green corrosion inhibitor against mild steel, aluminum, and tin: a review

Journal of Analytical Science and Technology - Tập 6 - Trang 1-16 - 2015
Sanjay K. Sharma1, Anjali Peter1, Ime Bassey Obot2
1Green Chemistry and Sustainability Research Group, Department of Chemistry, JECRC University, Jaipur, India
2Centre of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia

Tóm tắt

Azadirachta indica (AZI, commonly recognized as “Neem”) is noteworthy both for its chemical and for its biological actions. It is one of the most fruitful sources of secondary metabolites in nature. To date, more than 300 natural products have been isolated from different sections of the tree, with new compounds added to the list every year. As a contribution to the current interest on green corrosion inhibitors, the present study aims at broadening the application of plant extracts for metallic corrosion inhibition by investigating the inhibiting properties of A. indica especially for mild steel, aluminum, and tin. In the present article, we discuss the potential of AZI extract as a corrosion inhibitor on metal surfaces, especially of mild steel, aluminum, and tin. The adsorption isotherm studies, chemical composition of AZI, effect of temperature on inhibition efficiency and computational analysis related with AZI adsorption on metals have also been discussed in detail. This work will further help in the understanding of the adsorption mechanism involved and hence inhibition effect of plant extract against metal corrosion.

Tài liệu tham khảo

Abd-El-Nabey BA, Abdel-Gaber AM, Elawady GY, El-Houssein S (2012) Inhibitive action of some plant extracts on the alkaline corrosion of aluminum. Int J Electrochem Sci 7:7823–7839 Aboia KO, James O (2010) The effects of aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corrosion Science 52(2):661–664 Ajanaku KO, Aladesuyi O, Ajanaku CO, Adedapo EA, Akiusiku AA, Sodiya FE (2015) Adsorption properties of Azadirachta indica extract on corrosion of aluminium in 1.85 M hydrochloric acid. Journal of International Association of Advanced Technology and Science 16:4 Ajmal M, Mideen AS, Quraishi MA (1994) 2-Hydrazino-6-methyl-benzothiazole as an effective inhibitor for the corrosion of mild steel in acidic solutions. Corrosion Science Volume 36(1):79–84 Anozie IU, Akoma CS, Nnanna LA (2011) Corrosion inhibition of aluminium alloy in acidic medium by Euphorbia hirta and Dialum guineense extracts. Int J Pure Appl Sci Technol 6(2):79–88 Anuradha K, Vimala R, Narayanasamy B, Arockia JS, Rajendran S (2008) Corrosion inhibition of carbon steel in low chloride media by an aqueous extract of Hibiscus rosa-sinensis Linn. Chemical Engineering Communications 195:352–366 Arab TS, Turkustani-Al MA, Dhahiri-Al HR (2008) Synergistic effect of Azadirachta indica extract and iodide ions on the corrosion inhibition of aluminium in acid media. Journal of the Korean Chemical Society 52(3):281–294 Avwiri O, Igho OF (2003) Inhibitive action of Vernonia amygdalina on the corrosion of aluminium alloys in acidic media. Material Letter 57:3705–3711 Ayssar N, Ideisan AA, Ibrahim AR, Maysoon A-K (2010) UAE neem extract as a corrosion inhibitor for carbon steel in HCl solution. International Journal of Corrosion 2010:1–9 Barton D. Comprehensive natural products chemistry. In: Meth-Cohn O, editor. Elsevier Science, Oxford: Newnes; 1999 Bentiss F, Traisnel M, Chaibi N, Mernari B, Vezin H, Lagrenée M (2002) 2,5-Bis(n-methoxyphenyl)-1,3,4-oxadiazoles used as corrosion inhibitors in acidic media: correlation between inhibition efficiency and chemical structure. Corrosion Science 44(10):2271–2289 Bhola SM, Alabbas FM, Rahul B, Spear JR, Mishra B, Olson DL, Kakporbia AE (2014) Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: a preliminary investigation. Engineering Failure Analysis 36:92–103 Buchweishaija J (2009) Phytochemicals as green corrosion inhibitors in various corrosive media: a review. J Sci 35:77–92 Chauhan LR, Gunasekaran G (2007) Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corrosion Science 49(3):1143–1161 Desai PS (2015a) Hibiscus rosa-sinensis (Jasud) leaves extracts used as corrosion inhibitors for mild steel in hydrochloric acid. E-jpmr 2(1):470–485 Desai PS (2015b) Azadirachta indica (neem) leaf extract used as corrosion inhibitors for mild steel in hydrochloric acid. GE-International Journal of Engineering Research 3(1):8–23 Ebenso EE, Udofot JJ, Ibok JU, Ekpe (1998) Studies on the inhibition of mild steel corrosion by some plant extracts in acidic medium. Discovery and Innovation 10(1–2):52–59 Ebenso EE, Ibok JU, Ekpe JU, Umeron S, Jackson E, Abiola K, Oforka CN, Martinez S (2004) Corrosion inhibition studies of some plant extracts on aluminium in acidic medium. Transactions-Society for the Advancement of Electrochemical Science and Technology 39(4):117–123 Ebenso EE, Kabanda MM, Arslan T, Saracoglu M, Kandemirli F, Murulana LC, Singh AK, Shukla SK, Hammouti B, Khaled KF (2012a) Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int J Electrochem Sci 7:5643–5676 Ebenso EE, Kabanda MM, Murulana LC, Singh AK, Shukla SK (2012b) Electrochemical and quantum chemical investigation of some azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution. Ind Eng Chem Res 51:12940–12958 Eddy ON, Mamza PAP (2009) Inhibitive and adsorption properties of ethanol extract of seeds and leaves of Azadirachta indica on the corrosion of mild steel in H2SO4. Portugaliae Electrochimica Acta 27(4):443–456 El-hosary A, Saleh MR, Sharns MA (1972) Corrosion inhibition by naturally occurring substances—I. The effect of Hibiscus subdariffa (karkade) extract on the dissolution of Al and Zn. CorrosionSci 12:897–904 El-Sherif Rabab M, Badawy Waheed A (2011) Mechanism of corrosion and corrosion inhibition of tin in aqueous solutions containing tartaric acid. Int J Electrochem Sci 6:6469–6482 Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science 50(11):2981–2992 Gupta P, Jain G (2014) Corrosion inhibition by Aloe barbadensis (aloe vera) extract as green inhibitor for mild steel in HNO3. IJSRR 3(4):72–83 Jacobson. http://www.nap.edu/read/1924/chapter/5. 1986b Jain R, Kotha A, Bhadu MK, Choudhary SK, Sairullah M, Rout AK, Rout TK (2014) Pickling inhibition efficiency of extracts of Azadirachta indica and Momordica charantia acidic medium on steel, Tata Search., pp 159–168 Jin L, Wang L, Chen D (2006) Corrosion inhibition of a hygroscopic inorganic dust depressor. J Univ Sci Technol 13:368–371 Kabanda MM, Ebenso EE (2012) Density functional theory and quantitative structure-activity relationship studies of some quinoxaline derivatives as potential corrosion inhibitors for copper in acidic medium. Int J Electrochem Sci 7:8713–8733 Kabanda MM, Murulana LC, Ozcan M, Karadag F, Dehri I, Obot IB, Ebenso EE (2012a) Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. Int J Electrochem Sci 7:5035–5056 Kabanda MM, Murulana LC, Ebenso EE (2012b) Theoretical studies on phenazine and related compounds as corrosion inhibitors for mild steel in sulphuric acid medium. Int J Electrochem Sci 7:7179–7205 Kabanda MM, Obot IB, Ebenso EE (2013) Computational study of some amino acid derivatives as potential corrosion inhibitors for different metal surfaces and in different media. International Journal of Electrochemical Science 8:10839–10850. Kliˇski´c M, Radoˇsevi´c J, Gudi´c S S, Atalini´c V (2000) Aqueous extract of Rosmarinus officinalis L. as inhibitor of Al–Mg alloy corrosion in chloride solution. Journal of Applied Electrochemistry 30(7):823–830 Kumar CSSR, Srinivas M, Yakkundi S (1996) Limonoids from the seeds of Azadirachta indica. Phytochemistry 43:451–455 Kumpawat N, Chaturvedi A, Upadhyay RK (2012) Comparative study of corrosion inhibition efficiency of naturally occurring ecofriendly varieties of holy basil (tulsi) for tin in HNO3 solution. Open Journal Of Metal 2(03):68–73 Linthorst JA (2010) An overview: origins and development of green chemistry. Foundations of Chemistry 12(1):55–68 Loto AC, Loto RT, Popoola API (2011) Effect of neem leaf (Azadirachta indica) extract on the corrosion inhibition of mild steel in dilute acids. International Journal of the Physical Sciences 6(9):2249–2257 Majeed MH, Sultan AA, Al-Sahlanee HH (2014) Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract. J Chem Pharm Res 6(5):998 Mudhoo A, Sharma SK (2010) International Journal of Water Treatment and Green Chemistry 1(1):29–38 Muller B (2002) Corrosion inhibition of aluminium and zinc pigments by saccharides. Corros Sci 44:1583–1591 Nnanna LA, Obasi VU, Nwadiuko OC, Mejeh KI, Ekekwe ND, Udensi SC (2012) Inhibition by Newbouldia laevis leaf extract of the corrosion of aluminium in HCl and H2SO4 solutions. Archives of Applied Science Research 4(1):207–217 Noor EA (2007) Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves. International Journal of Electrochemical Science 2:996–1017 ObiEgbedi NO et al (2011) Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some phenanthroline derivatives on mild steel surface. Int J Electrochem Sci 6:5649–5675 Obi-Egbedi NO, Obot IB, Umoren SA (2012) Spondias mombin L. as a green corrosion inhibitor for aluminium in sulphuric acid: correlation between inhibitive effect and electronic properties of extracts major constituents using density functional theory. Arabian Journal of Chemistry 5:361–373 Obiukwu OO, Opara OI, Oyinna CB (2013) Corrosion inhibition of stainless steel using plant extract Vernonia amygdalina and Azadirachta indica. The Pacific Journal of Science and Technology 14(2):31–35 Obot IB (2014) In: Aliofkhazraei M (ed) Developments in corrosion protection. INTECH, Croatia, pp 123–151 Obot IB, Gasem ZM (2014) Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corrosion Science 83:359–366 Obot IB, Obi-Egbedi NO (2010) Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: experimental and theoretical investigation. Corrosion Science 52(1):198–204 Obot IB, Obi-Egbedi NO, Umoren SA (2009) The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corrosion Science 51(2):276–282 Obot IB, Ebenso EE, Kabanda MM (2013) Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: experimental and theoretical investigation. Journal of Environmental Chemical Engineering 1:431–439 Oguzie EE (2006) Adsorption and corrosion inhibitive properties of Azadirachta indica in acid solutions. Pigment and Resin Technology 35(6):334–340 Oguzie EE (2008) Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel. Corrosion Science 50(11):2993–2998 Oguzie EE, Enenebeaku CK, Akalezi CO, Okoro SC, Ayuk AA, Ejike EN (2010) Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media. Journal of Colloid and Interface Science 349:283–292 Oguzie EE, Adindu CB, Enenebeaku CK, Ogukwe CE, Chidiebere MA, Oguzie KL (2012a) Natural products for materials protection: mechanism of corrosion inhibition of mild steel by acid extracts of Piper guineense. Journal of Physical Chemical 116:13603–13615 Oguzie EE, Ogukwe CE, Ogbulie JN, Nwanebu FC, Adindu CB, Udeze IO, Oguzie KL, Eze FC (2012b) Broad spectrum corrosion inhibition: corrosion and microbial (SRB) growth inhibiting effects of Piper guineense extract. Journal of Material Science 47:3592–3601 Oguzie EE, Oguzie KL, Akalezi CO, Udeze IO, Ogbulie JN, Njoku VO (2013) Natural products for materials protection: corrosion and microbial growth inhibition using Capsicum frutescens biomass extracts. ACS Sustainable Chemistry and Engineering 1:214–225 Okafor PC, Uwah IE, Ekerenam OO, Ekpe UJ (2009) Combretum bracteosum extracts as eco-friendly corrosion inhibitor for mild steel in acidic medium. Pigment and Resin Technology 38(4):236–241 Okafor PC, Ikpi ME, Ekanem UI, Ebenso EE (2013) Effects of extracts from Nauclea latifolia on the dissolution of carbon steel in H2SO4 solutions. Int J Electrochem Sci 8:12278–12286 Peter A, Sharma SK, Obot IB (2015) Use of natural gums as green corrosion inhibitors: an overview. International Journal of Industrial Chemistry 6(3):153–164 Quraishi AM, Ansari AF, Jamal D (2004) Corrosion inhibition of tin by some amino acids in citric acid. Indian Journal Or Chemical Technology 11:271–274 Quraishi MA, Obot IB, Eddy NO, Kabanda MM, Shukla SK, Singh AK, Murulana LC, Ebenso EE (2012) Electrochemical and quantum chemical studies on calmagite and fast sulphone black F dyes as corrosion inhibitors for mild steel in hydrochloric medium. Int J Electrochem Sci 7:8813–8831 Qurasishi AM (2004) NACE meeting papers Raja PB, Sethuraman MG (2008a) Atropine sulphate as corrosion inhibitor for mild steel in sulphuric acid medium. Material Letters 62:1602–1604 Raja PB, Sethuraman MG (2008b) Natural products as corrosion inhibitor for metals in corrosive media—a review. Materials Letters 62(1):113–116 Rehan HH (2003) Corrosion control by water‐soluble extracts from leaves of economic plants. Materialwissenschaft und Werkstofftechnik 34(2):232–237 Salami L, Wewe TOY, Akinyemi OP, Patinvoh RJ. A Study Of The Corrosion Inhibitor Of Mild Steel In Sulphuric Acid Using Musa Sapientum Peels Extract. Global Engineers & Technologists Review. 2012; 2(12) Sangeetha TV, Fredimoses M (2011) Inhibition of mild copper metal corrosion in HNO3 medium by acid extract of Azadirachta indica seed. E-Journal of Chemistry 8(S1):S1–S6 Sangeetha M, Rajendran S, Sathiyabama J, Prabhakar P (2012) Eco friendly extract of banana peel as corrosion inhibitor for carbon steel in sea water. J Nat Prod Plant Resour 2(5):601–610 Sanyal B (1981) Organic compounds as corrosion inhibitors in different environments—a review. Progress in Organic Coatings 9(2):165–236 Schaaf O, Jarvis AP, van der Esch SA, Giagnacovo G, Oldham NJ (2000) Rapid and sensitive analysis of Azadirachtin and related triterpenoids from neem (Azadirachta indica) by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 886(1):89–97 Schmitt G, Hays GF, Burns W, Han EH, Pourbaix A, Jacobson G (2009a) World Corrosion Organization., pp 1–44 Schmitt G, Hays GF, Burns W, Han EH, Pourbaix A, Jacobson G (2009b) Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control., World Corrosion Organization 1–44 Sharma SK, Sharma A (2011) Green corrosion inhibitors: status in developing countries. In: Sharma SK (ed) Green corrosion chemistry and engineering. Wiley–VCH Publications, Germany, pp 157–176 Sharma SK, Mudhoo A, Khamis E (2009a) Corrosion inhibition of neem (Azadirachta indica) leaves extract as a green corrosion inhibitor for zinc in H2SO4. Journal of Corrosion Science and Engineering 11:1–25 Sharma SK, Jain G, Sharma J, Mudhoo A, Sharma J (2009b) RASAYAN. Journal of Chemistry 2 2:332–339 Sharma SK, Mudhoo A, Jain G, Khamis E (2009c) Gray chemistry verses green chemistry: challenges and opportunities. Green Chemistry Letters and Reviews 2(1):47–51 Sharma SK, Mudhoo A, Zhang W (2010a) Green chemistry and engineering: a versatile research perspective. In: Sharma SK, Mudhoo A (eds) Green chemistry for environmental sustainability, vol 1. Taylor & Francis Group, LLC, Florida, Boca Raton, pp 1–52 Sharma SK, Jain G, Sharma J, Mudhoo A (2010b) Journal of the Indian Council of Chemists 27(1):35–39 Sharma SK, Jain G, Sharma J, Mudhoo A (2010c) Corrosion inhibition behaviour of Azadirachta indica (neem) leaves extract as a green corrosion inhibitor for zinc in hydrochloric acid: a preliminary study. International Journal of Applied Chemistry 6(1):83–94 Sharma SK, Mudhoo A, Jain G, Sharma J (2010d) Corrosion inhibition and adsorption properties of Azadirachta indica mature leaves extract as green inhibitor for mild steel in HNO3. Green Chemistry Letters and Reviews 3(1):7–15 Sharma SK, Sanghi Rashmi, Singh Vandana (2011) Environment and the role of green chemistry. In: Sanghi R (ed) Green chemistry for environmental remediation. Scrivener Publishing LLC, Massachusetts, pp 3–34 Sharma A, Choudhary G, Sharma A, Yadav S (2013) Effect of temperature on inhibitory efficacy of Azadirachta indica fruit on acid corrosion of aluminum. International Journal of Innovative Research in Science Engineering and Technology 2(12):7982–7992 Shyamala M, Arulanantham A (2009) Eclipta alba as corrosion pickling inhibitor on mild steel in hydrochloric acid. Journal of Materials Science and Technology 25(5):633–636 Singh A, Kumar A, Pramanik T (2013) A theoretical approach to the study of some plant extracts as green corrosion inhibitor for mild steel in HCl solution. Oriental Journal of Chemistry 29(1):277–283 Souza TF, Magalhães M, Torres VV, D’Elia E (2015) Inhibitory action of ilex paraguariensis extracts on the corrosion of carbon steel in HCl solution. Int J Electrochem Sci 10:22–33 Subhashini S, Rajalakshmi R, Prithiba A, Mathina A (2010) Corrosion mitigating effect of Cyamopsis tetragonoloba seed extract on mild steel in acid medium. E-Journal of Chemistry 7(4):1133–1137 Thompson NG, Yunovich M, Dunmire D (2007) Cost of corrosion and corrosion maintenance strategies. Corrosion Reviews 25(3–4):247–262 Tuaweri TJ, Ogbonnaya EA, Onyemaobi OO (2015) Corrosion inhibition of heat treated mild steel with neem leave extract in a chloride medium. International Journal of Research in Engineering and Technology 04(6):2321–7308 Ulaeto SB, Ekpe UJ, Chidiebere MA, Oguzie EE (2012) Corrosion inhibition of mild steel in hydrochloric acid by acid extracts of Eichhornia crassipes. International Journal of Materials and Chemistry 2(4):158–164 Umoren SA, Eduok UM, Israel AU, Obot IB, Solomon MM (2012) Coconut coir dust extract: a novel eco-friendly corrosion inhibitor for Al in HCl solutions. Green Chemistry Letters and Reviews 5(3):303–313 Umoren S, Obot IB , Gasem Z, Odewunmi NA. Experimental and theoretical studies of red apple fruit extract as green corrosion inhibitor for mild steel in HCl solution. Journal of Dispersion Science and Technology (just-accepted). 2014 Vasudha VG, Saratha R (2011) Studies on inhibition of acid corrosion of mild steel by Terminalia catappa (tropical almond) leaves. Orient J Chem 27(3):1165–1171 Xia S, Qiu M, Yu L, Liu F, Zhao H (2008) Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corrosion Science 50:2021–2029 Yamuna J, Athony N (2014) Citrus sinensis L. leaf extract as an efficient green corrosion inhibitor for mild steel in aqueous medium. International Journal of ChemTech Research 7(01):37–43 Yetri Y, Emriadi, Jamarun N, Gunawarman (2014) Corrosion inhibition efficiency of mild steel in hydrochloric acid by adding Theobroma cacao peel extract. International conference on biological, chemical and environmental sciences Penang (Malaysia)