Relative abundance of grazing and browsing herbivores is not a direct reflection of vegetation structure: Implications for hominin paleoenvironmental reconstruction

Journal of Human Evolution - Tập 177 - Trang 103328 - 2023
Enquye W. Negash1, W. Andrew Barr1
1Center for the Advanced Study of Human Paleobiology, George Washington University, 800 22nd Street, Northwest, Washington D.C. 20052, USA

Tài liệu tham khảo

Alemseged, 2003, An integrated approach to taphonomy and faunal change in the Shungura Formation (Ethiopia) and its implication for hominid evolution, J. Hum. Evol., 44, 451, 10.1016/S0047-2484(03)00012-5 Ambrose, 1986, The isotopic ecology of East African mammals, Oecologia, 69, 395, 10.1007/BF00377062 Barboni, 1999, Phytoliths as paleoenvironmental indicators, west side Middle Awash Valley, Ethiopia, Paleogeogr. Palaeoclimatol. Palaeoecol., 152, 87, 10.1016/S0031-0182(99)00045-0 Barr, 2015, Paleoenvironments of the Shungura Formation (Plio-Pleistocene: Ethiopia) based on ecomorphology of the bovid astragalus, J. Hum. Evol., 88, 97, 10.1016/j.jhevol.2015.05.002 Barr, 2020, Mammal functional diversity and habitat heterogeneity: Implications for hominin habitat reconstruction, J. Hum. Evol., 146, 10.1016/j.jhevol.2020.102853 Bedaso, 2010, Paleoenvironmental reconstruction of the Asbole fauna (Busidima Formation, Afar, Ethiopia) using stable isotopes, Geobios, 43, 165, 10.1016/j.geobios.2009.09.008 Bedaso, 2013, Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: Implication for Australopithecus afarensis habitat and food resources, J. Hum. Evol., 64, 21, 10.1016/j.jhevol.2012.05.015 Behrensmeyer, 2006, Climate change and human evolution, Science, 311, 476, 10.1126/science.1116051 Behrensmeyer, 2007, The structure and rate of late Miocene expansion of C4 plants: Evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan, Geol. Soc. Am. Bull., 119, 1486, 10.1130/B26064.1 Bell, 1982, The effect of soil nutrient availability on community structure in African ecosystems, 193 Belsky, 1990, Tree/grass ratios in East African savannas: A comparison of existing models, J. Biogeogr., 483, 10.2307/2845380 Bibi, 2013, Ecological change in the lower Omo Valley around 2.8 Ma, Biol. Lett., 9, 10.1098/rsbl.2012.0890 Bobe, 2001, Responses of African bovids to Pliocene climatic change, Paleobiology, 27, 1, 10.1666/0094-8373(2001)027<0001:ROABTP>2.0.CO;2 Bobe, 2002, Faunal change, environmental variability and late Pliocene hominin evolution, J. Hum. Evol., 42, 475, 10.1006/jhev.2001.0535 Bobe, 2004, The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo, Paleogeogr. Palaeoclimatol. Palaeoecol., 207, 399, 10.1016/j.palaeo.2003.09.033 Bobe, 2020, The ecology of Australopithecus anamensis in the early Pliocene of Kanapoi, Kenya, J. Hum. Evol., 140, 10.1016/j.jhevol.2019.102717 Bonnefille, 2004, High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis, Proc. Natl. Acad. Sci. USA, 101, 12125, 10.1073/pnas.0401709101 Bourlière, 1970, The ecology of tropical savannas, Annu. Rev. Ecol. Syst., 1, 125, 10.1146/annurev.es.01.110170.001013 Brunet, 1995, The first australopithecine 2,500 kilometres west of the Rift Valley (Chad), Nature, 378, 273, 10.1038/378273a0 Buchhorn, 2020, Copernicus global land cover layers—collection 2, Remote Sens., 12, 1044, 10.3390/rs12061044 Bukombe, 2019, The influence of food availability, quality and body size on patch selection of coexisting grazer ungulates in western Serengeti National Park, Wildl. Res., 46, 54, 10.1071/WR18072 Cáceres, 2010, Mammals in a fragmented savannah landscape in south-western Brazil, J. Nat. Hist., 44, 491, 10.1080/00222930903477768 Cerling, 1997, Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153, 10.1038/38229 Cerling, 2003, Diets of East African Bovidae based on stable isotope analysis, J. Mammal., 84, 456, 10.1644/1545-1542(2003)084<0456:DOEABB>2.0.CO;2 Cerling, 2005, Environmentally driven dietary adaptations in African mammals, 258 Cerling, 2010, Comment on the paleoenvironment of Ardipithecus ramidus, Science, 328, 1105, 10.1126/science.1185274 Cerling, 2011, Woody cover and hominin environments in the past 6 million years, Nature, 476, 51, 10.1038/nature10306 Cerling, 2015, Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma, Proc. Natl. Acad. Sci. USA, 112, 11467, 10.1073/pnas.1513075112 Cerling, 2021, CH4/CO2 ratios and carbon isotope enrichment between diet and breath in herbivorous mammals, Front. Ecol. Evol., 9, 10.3389/fevo.2021.638568 Chritz, 2016, Hippopotamus (H. amphibius) diet change indicates herbaceous plant encroachment following megaherbivore population collapse, Sci. Rep., 6, 10.1038/srep32807 Coughenour, 1985, Graminoid responses to grazing by large herbivores: Adaptations, exaptations, and interacting processes, Ann. Missouri Bot. Gard., 852, 10.2307/2399227 Crété, 2021 Cromsigt, 2006, Resource partitioning among savanna grazers mediated by local heterogeneity: An experimental approach, Ecology, 87, 1532, 10.1890/0012-9658(2006)87[1532:RPASGM]2.0.CO;2 Cromsigt, 2009, Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: Interaction of body mass and digestive strategy, Divers. Distrib., 15, 513, 10.1111/j.1472-4642.2008.00554.x Daskin, 2018, Warfare and wildlife declines in Africa's protected areas, Nature, 553, 328, 10.1038/nature25194 Devine, 2017, Determinants of woody encroachment and cover in African savannas, Oecologia, 183, 939, 10.1007/s00442-017-3807-6 Di Gregorio, 2005 Du, 2018, Diversity analysis of Plio-Pleistocene large mammal communities in the Omo- Turkana Basin, eastern Africa, J. Hum. Evol., 124, 25, 10.1016/j.jhevol.2018.07.004 Du, 2018, Spatial, temporal and taxonomic scaling of richness in an eastern African large mammal community, Glob. Ecol. Biogeogr., 27, 1031, 10.1111/geb.12762 Du, 2019, Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene, Rev. Palaeobot. Palynol., 261, 41, 10.1016/j.revpalbo.2018.11.003 Du Toit, 2003, Large herbivores and savanna heterogeneity, 292 Du Toit, 1999, Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism, Biodivers. Conserv., 8, 1643, 10.1023/A:1008959721342 Du Toit, 1989, Body size, population metabolism, and habitat specialization among large African herbivores, Am. Nat., 133, 736, 10.1086/284949 Ehleringer, 1993, Evolutionary and ecological aspects of photosynthetic pathway variation, Annu. Rev. Ecol. Syst., 24, 411, 10.1146/annurev.es.24.110193.002211 Elton, 2008, The environmental context of human evolutionary history in Eurasia and Africa, J. Anat., 212, 377 Faith, 2019, Addressing the effects of sampling on ecometric-based paleoenvironmental reconstructions, Paleogeogr. Palaeoclimatol. Palaeoecol., 528, 175, 10.1016/j.palaeo.2019.05.006 Faith, 2019, Early hominins evolved within non-analog ecosystems, Proc. Natl. Acad. Sci. USA, 116, 21478, 10.1073/pnas.1909284116 Faith, 2021, Rethinking the ecological drivers of hominin evolution, Trends Ecol. Evol., 36, 797, 10.1016/j.tree.2021.04.011 Farnsworth, 2002, Grassland-herbivore interactions: How do grazers coexist?, Am. Nat., 159, 24, 10.1086/324114 Fick, 2017, WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086 Fillion, 2022, A nonanalog Pliocene ungulate community at Laetoli with implications for the paleoecology of Australopithecus afarensis, J. Hum. Evol., 10.1016/j.jhevol.2022.103182 Fortelius, 2016, An ecometric analysis of the fossil mammal record of the Turkana Basin, Philos. Trans. R. Soc. B, 371, 10.1098/rstb.2015.0232 Fritz, 1994, On the carrying capacity for large ungulates of African savanna ecosystems, Proc. R. Soc. B, 256, 77, 10.1098/rspb.1994.0052 Fryxell, 2004, Predictive models of movement by Serengeti grazers, Ecology, 85, 2429, 10.1890/04-0147 Fryxell, 2005, Landscape scale, heterogeneity, and the viability of Serengeti grazers, Ecol. Lett., 8, 328, 10.1111/j.1461-0248.2005.00727.x Gorelick, 2017, Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18, 10.1016/j.rse.2017.06.031 Grine, 2006, Molar microwear in Praeanthropus afarensis: Evidence for dietary stasis through time and under diverse paleoecological conditions, J. Hum. Evol., 51, 297, 10.1016/j.jhevol.2006.04.004 Hanan, 2020 Hansen, 2003, Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm, Earth Interact., 7, 1, 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 Hansen, 2013, High-resolution global maps of 21st-century forest cover change, Science, 342, 850, 10.1126/science.1244693 Hempson, 2015, Ecology of grazing lawns in Africa, Biol. Rev., 90, 979, 10.1111/brv.12145 Hesselbarth, 2019, Landscapemetrics: An open- source R tool to calculate landscape metrics, Ecography, 42, 1648, 10.1111/ecog.04617 Hobbs, 2010, How does landscape heterogeneity shape dynamics of large herbivore populations?, 141 Hopcraft, 2012, Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers, J. Anim. Ecol., 81, 201, 10.1111/j.1365-2656.2011.01885.x Hopcraft, 2010, Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas, Trends Ecol. Evol., 25, 119, 10.1016/j.tree.2009.08.001 2020 Jarman, 1974, The social organisation of antelope in relation to their ecology, Behaviour, 48, 215, 10.1163/156853974X00345 Karp, 2021, Global response of fire activity to late Quaternary grazer extinctions, Science, 374, 1145, 10.1126/science.abj1580 Karra, 2021, Global land use/land cover with Sentinel 2 and deep learning, IEEE Int. Geosci. Remote Sens. Symp., 4704 Kartzinel, 2020, Multiple dimensions of dietary diversity in large mammalian herbivores, J. Anim. Ecol., 89, 1482, 10.1111/1365-2656.13206 Kartzinel, 2015, DNA metabarcoding illuminates dietary niche partitioning by African large herbivores, Proc. Natl. Acad. Sci. USA, 112, 8019, 10.1073/pnas.1503283112 Kay, 1985, Dental evidence for the diet of Australopithecus, Annu. Rev. Anthropol., 14, 315, 10.1146/annurev.an.14.100185.001531 Kiffner, 2019, Population dynamics of browsing and grazing ungulates in the Anthropocene, 155 Kingston, 2007, Shifting adaptive landscapes: Progress and challenges in reconstructing early hominid environments, Am. J. Phys. Anthropol., 134, 20, 10.1002/ajpa.20733 Kingston, 2007, Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology, Paleogeogr. Palaeoclimatol. Palaeoecol., 243, 272, 10.1016/j.palaeo.2006.08.002 Koch, 1998, Isotopic reconstruction of past continental environments, Annu. Rev. Earth Planet. Sci., 26, 573, 10.1146/annurev.earth.26.1.573 Lee-Thorp, 2003, What do stable isotopes tell us about hominid dietary and ecological niches in the Pliocene?, Int. J. Osteoarchaeol., 13, 104, 10.1002/oa.659 Lee-Thorp, 2006, Contributions of biogeochemistry to understanding hominin dietary ecology, Am. J. Phys. Anthropol., 131, 131, 10.1002/ajpa.20519 Levin, 2015, Environment and climate of early human evolution, Annu. Rev. Earth Planet. Sci., 43, 405, 10.1146/annurev-earth-060614-105310 Levin, 2004, Isotopic evidence for Plio–Pleistocene environmental change at Gona, Ethiopia, Earth Planet. Sci. Lett., 219, 93, 10.1016/S0012-821X(03)00707-6 Levin, 2011, Paleosol carbonates from the Omo Group: Isotopic records of local and regional environmental change in East Africa, Paleogeogr. Palaeoclimatol. Palaeoecol., 307, 75, 10.1016/j.palaeo.2011.04.026 Levin, 2015, Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene, Proc. Natl. Acad. Sci. USA, 112, 12304, 10.1073/pnas.1424982112 Lüdecke, 2022, Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique, Front. Ecol. Evol., 10, 1107, 10.3389/fevo.2022.958032 Macandza, 2012, Dynamic spatial partitioning and coexistence among tall grass grazers in an African savanna, Oikos, 121, 891, 10.1111/j.1600-0706.2012.20250.x Marston, 2019, Water availability is a principal driver of large-scale land cover spatial heterogeneity in sub-Saharan savannahs, Landsc. Ecol., 34, 131, 10.1007/s10980-018-0750-9 McGarigal, 2015 Meise, 2020, Alarm communication networks as a driver of community structure in African savannah herbivores, Ecol. Lett., 23, 293, 10.1111/ele.13432 Murray, 2000, Vegetation modification and resource competition in grazing ungulates, Oikos, 89, 501, 10.1034/j.1600-0706.2000.890309.x Negash, 2020, Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia, Proc. Natl. Acad. Sci. USA, 117, 21921, 10.1073/pnas.2006982117 O'Leary, 1988, Carbon isotopes in photosynthesis, Bioscience, 38, 328, 10.2307/1310735 Olff, 2002, Global environmental controls of diversity in large herbivores, Nature, 415, 901, 10.1038/415901a O'Regan, 2016, Hominin home ranges and habitat variability: Exploring modern African analogues using remote sensing, J. Archaeol. Sci. Rep., 9, 238 Owen, 1981, Mutualism between grasses and grazers: An evolutionary hypothesis, Oikos, 376, 10.2307/3544637 Owen-Smith, 2014, Spatial ecology of large herbivore populations, Ecography, 37, 416, 10.1111/j.1600-0587.2013.00613.x Owen-Smith, 2021 Pansu, 2019, Trophic ecology of large herbivores in a reassembling African ecosystem, J. Ecol., 107, 1355 Patterson, 2019, Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo, Nat. Ecol. Evol., 3, 1048, 10.1038/s41559-019-0916-0 Potts, 2012, Evolution and environmental change in early human prehistory, Annu. Rev. Anthropol., 41, 151, 10.1146/annurev-anthro-092611-145754 Pretorius, 2009 Prins, 2008, Species diversity of browsing and grazing ungulates: Consequences for the structure and abundance of secondary production, 179 Pulliam, 1973, On the advantages of flocking, J. Theor. Biol., 38, 419, 10.1016/0022-5193(73)90184-7 Quinn, 2013, Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin, J. Hum. Evol., 65, 65, 10.1016/j.jhevol.2013.04.002 2021 Reed, 1997, Early hominid evolution and ecological change through the African Plio-Pleistocene, J. Hum. Evol., 32, 289, 10.1006/jhev.1996.0106 Reed, 2008, Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia, J. Hum. Evol., 54, 743, 10.1016/j.jhevol.2007.08.013 Reynolds, 2015, The ‘mosaic habitat' concept in human evolution: Past and present, Trans. R. Soc. South Afr., 70, 57, 10.1080/0035919X.2015.1007490 Robinson, 2021, Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover, Nat. Ecol. Evol., 5, 995, 10.1038/s41559-021-01455-7 Roche, 2013, Stable isotope analyses of tooth enamel carbonate of large herbivores from the Tugen Hills deposits: Palaeoenvironmental context of the earliest Kenyan hominids, Earth Planet. Sci. Lett., 381, 39, 10.1016/j.epsl.2013.08.021 Ryser, 1996, The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses, Funct. Ecol., 717, 10.2307/2390506 Sankaran, 2005, Determinants of woody cover in African savannas, Nature, 438, 846, 10.1038/nature04070 Sexton, 2013, Global, 30-m resolution continuous fields of tree cover: Landsat- based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error, Int. J. Digit. Earth, 6, 427, 10.1080/17538947.2013.786146 Sinclair, 1985, Does interspecific competition or predation shape the African ungulate community?, J. Anim. Ecol., 899, 10.2307/4386 Sinclair, 2003, Patterns of predation in a diverse predator–prey system, Nature, 425, 288, 10.1038/nature01934 Smith, 1971, Two categories of 13C/12C ratios for higher plants, Plant Physiol., 47, 380, 10.1104/pp.47.3.380 Sponheimer, 2003, Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction, S. Afr. J. Sci., 99, 273 Sponheimer, 2001, Isotopic palaeoecology of Makapansgat Limeworks perissodactyla, S. Afr. J. Sci., 97, 327 Sponheimer, 2003, Diets of southern African Bovidae: Stable isotope evidence, J. Mammal., 84, 471, 10.1644/1545-1542(2003)084<0471:DOSABS>2.0.CO;2 Stalmans, 2019, War-induced collapse and asymmetric recovery of large-mammal populations in Gorongosa National Park, Mozambique, PLoS One, 14, 10.1371/journal.pone.0212864 Su, 2022, Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity, J. Hum. Evol., 163, 10.1016/j.jhevol.2021.103076 Tejada-Lara, 2018, Body mass predicts isotope enrichment in herbivorous mammals, Proc. R. Soc. B, 285, 10.1098/rspb.2018.1020 Ungar, 2011, The diets of early hominins, Science, 334, 190, 10.1126/science.1207701 Uno, 2018, Large mammal diets and paleoecology across the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania from stable isotope and tooth wear analyses, J. Hum. Evol., 120, 76, 10.1016/j.jhevol.2018.01.002 Van der Merwe, 1982, Carbon isotopes, photosynthesis, and archaeology: Different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets, Am. Sci., 70, 596 Van Der Merwe, 2003, The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa, J. Hum. Evol., 44, 581, 10.1016/S0047-2484(03)00050-2 Venter, 2018, Drivers of woody plant encroachment over Africa, Nat. Commun., 9, 2272, 10.1038/s41467-018-04616-8 Villaseñor, 2020, Middle Pliocene hominin distribution patterns in Eastern Africa, J. Hum. Evol., 147, 10.1016/j.jhevol.2020.102856 Wiens, 1976, Population responses to patchy environments, Annu. Rev. Ecol. Syst., 81, 10.1146/annurev.es.07.110176.000501 Westoby, 2002, Plant ecological strategies: Some leading dimensions of variation between species, Annu. Rev. Ecol. Syst., 33, 125, 10.1146/annurev.ecolsys.33.010802.150452 White, 1983 White, 2009, Ardipithecus ramidus and the paleobiology of early hominids, Science, 326, 64, 10.1126/science.1175802 WoldeGabriel, 2009, The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus, Science, 326, 65, 10.1126/science.1175817 Wood, 2004, Patterns of resource use in early Homo and Paranthropus, J. Hum. Evol., 46, 119, 10.1016/j.jhevol.2003.11.004 Wynn, 2004, Influence of Plio-Pleistocene aridification on human evolution: Evidence from paleosols of the Turkana Basin, Kenya, Am. J. Phys. Anthropol., 123, 106, 10.1002/ajpa.10317 Wynn, 2006, Geological and palaeontological context of a Pliocene juvenile hominin at Dikika, Ethiopia, Nature, 443, 332, 10.1038/nature05048 Wynn, 2013, Diet of Australopithecus afarensis from the Pliocene Hadar formation, Ethiopia, Proc. Natl. Acad. Sci. USA, 110, 10495, 10.1073/pnas.1222559110 Wynn, 2020, Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus, Proc. Natl. Acad. Sci. USA, 117, 21978, 10.1073/pnas.2006221117