Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review

Catalysis Letters - Tập 151 - Trang 307-323 - 2020
Muhammad Naveed1, Fareeha Nadeem2, Tahir Mehmood3, Muhammad Bilal4, Zahid Anwar2, Fazeeha Amjad5
1Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
2Department of Biochemistry & Biotechnology, University of Gujrat, Punjab, Pakistan
3Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences-UVAS, Lahore, Pakistan
4School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
5Department of Biotechnology, Quaid.-i-.Azam University, Islamabad, Pakistan

Tóm tắt

Proteases are important industrial biocatalysts that constitute the largest group of enzymes acting as proteinases, peptidases, and amidases with a broad range of industrial applications. In this review, particular attention has been given to comprehensively scrutinize the proteases. After the succinct introduction, classification of proteases as exopeptidases (amino and carboxy proteases) and endopeptidases (serine, aspartic, cysteine, and metalloproteases), sources of alkaline, acidic and neutral protease like animal, plant and microbial sources along with the multi-industrial applications have been dissertated. Now a day’s, mostly proteases, which are present in the market, are produced from microbial sources because of the fast production rate and the limited requirement of cultivation. In addition to this, a critique on the applications of proteases in food, detergent, leather, pharmaceutical, cosmetics, silk degumming, silver recovery, chemical industry, and wastewater treatment industries is also concisely addressed. Finally, protein engineering and immobilization strategies to improve the catalytic properties of protease are thoroughly vetted. The quest for novel sources of protease enzyme has been encouraged to fulfill their ever-increasing demands for industrial exploitation.

Tài liệu tham khảo

Kumar P, Sharma SM (2016) Enzymes in green chemistry: the need for environment and sustainability. IJAR 2(6):337–341 Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611 Rekik H, Jaouadi NZ, Gargouri F et al (2019) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 121:1227–1239 Muthulakshmi C, Gomathi D, Kumar DG et al (2011) Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan J Biol Sci 4(3):137–148 Sharma M, Gat Y, Arya S et al (2019) A review on microbial alkaline protease: an essential tool for various industrial approaches. Indus Biotech 15(2):69–78 Wahab WAA, Ahmed SA (2017) Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA. Int J Biol Macromol 115:447–458 Munawar TM, Aruna K, Swamy A (2014) Production, purification and characterization of alkaline protease from agro industrial wastes by using Aspergillus terreus (AB661667) under solid state fermentation. Int J Adv Res Eng Appl Sci 3(10):12–23 Maitig AMA, Alhoot MA, Tiwari K (2018) Isolation and screening of extracellular protease enzyme from fungal isolates of soil. J Pure Appl Microbiol 4:2059 Souza PMD, Bittencourt MLDA, Caprara CC et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46(2):337–346 Kumar R, Vats R (2010) Protease production by Bacillus subtilis immobilized on different matrices. NY Sci J 3(7):20–24 Rohan M (2014) Protease enzymes market worth $2,767 million by 2019*** Dettmer A, Cavalli E, Ayub MA et al (2013) Environmentally friendly hide unhairing: enzymatic hide processing for the replacement of sodium sulfide and delimig. J Clean Prod 47:11–18 Fazilat A (2016) Production, isolation, purification and partial characterization of an extracellular acid protease from Aspergillus niger. Int J Adv Res Biol Sci 3(3):32–38 Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240 Sawant R, Nagendran S (2014) Protease: an enzyme with multiple industrial applications. World J Pharm Pharm Sci 3:568–579 Proteases Market Size, Industry Analysis Report, Regional Outlook, Application Development Potential, Price Trends, Competitive Market Share & Forecast: 2020–2026 Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351 Sani JT, Gharibi SOS, Shariati MA (2017) The importance of alkaline protease commercial applications: a short review. Ind J Resin Pharm Biotechnol 5(1):5 Rao MB, Tanksale AM, Ghatge MS et al (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635 Motyan JA, Toth F, Tozser J (2013) Research applications of proteolytic enzymes in molecular biology. Biomolecules 3(4):923–942 Siroya H, Patel S, Upadhyay D (2020) Industrial applications of protease: a review. Stud Indian Place Names 40(71):224–232 Page M, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65(7–8):1220–1236 Thakur N, Goyal M, Sharma S et al (2018) Proteases: industrial applications and approaches used in strain improvement. Biol Forum J 10(1):158–167 Muhammad N (2011) Biotechnological production of alkaline protease for industrial use. University of the Punjab, Lahore Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61(9):690–704 Theron LW, Divol B (2014) Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 98(21):8853–8868 Vashishta A, Ohri SS, Vetvickova J et al (2007) Procathepsin D secreted by HaCaT keratinocyte cells—a novel regulator of keratinocyte growth. Eur J Cell Biol 86(6):303–313 Souza PM, Werneck G, Aliakbarian B et al (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110 Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31(7):1630–1643 de Castro RJS, Sato HH (2014) Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal Agric Biotechnol 3(3):20–25 Novelli PK, Barros MM, Fleuri LF (2016) Novel inexpensive fungi proteases: production by solid state fermentation and characterization. Food Chem 198:119–124 Chanalia P, Gandhi D, Jodha D et al (2011) Applications of microbial proteases in pharmaceutical industry: an overview. Rev Med Microbiol 22(4):96–101 Ahmad R, Zuily-Fodil Y, Passaquet C et al (2013) Bacterial expression, purification and partial characterization of new recombinant cysteine protease from maize leaves: post-transcriptional changes under ozone stress. Pak J Bot 45:441–446 Veloorvalappil NJ, Robinson BS, Selvanesan P et al (2013) Versatility of microbial proteases. Adv Enzyme Res 1(3):1–13 Adinarayana K, Ellaiah P (2002) Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J Pharm Pharm Sci 5(3):272–278 Singhal P, Nigam V, Vidyarthi A (2012) Studies on production, characterization and applications of microbial alkaline proteases. Int J Adv Biotechnol Res 3(3):653–669 Tavano OL, Berenguer-Murcia A, Secundo F et al (2018) Biotechnological applications of proteases in food technology. Comp Rev Food Sci Food Saf 17(2):412–436 Mishra SS, Ray RC, Rosell CM (2017) Microbial enzymes in food applications: history of progress. In: Microbial enzyme technology in food applications. CRC Press, Boca Raton, pp 17–32 Freitas A, Baleeiro FCF, Fonseca RF et al (2015) Bioprocess development to add value to canola cake used as substrate for proteolytic enzyme production. Food Bioprod Process 95:173–182 Khan F (2013) New microbial proteases in leather and detergent industries. Innov Res Chem 1(1):1–6 Benluvankar V, Jebapriya GR, Gnanadoss JJ (2015) Protease production by Penicillium sp. LCJ228 under solid state fermentation using groundnut oilcake as substrate. Life 50:1–12 Sharma N (2019) A review on fungal alkaline protease. J Emerg Tech Innov Res 6(6):1–14 Oyeleke S, Egwim EC, Auta S (2010) Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. J Microbiol Antimicrob 2(7):83–87 Charles P, Devanathan V, Anbu P et al (2008) Purification, characterization and crystallization of an extracellular alkaline protease from Aspergillus nidulans HA-10. J Basic Microbiol 48(5):347–352 Sharma AK, Sharma V, Saxena J et al (2015) Isolation and screening of extracellular protease enzyme from bacterial and fungal isolates of soil. Int J Sci Res Environ Sci 3(9):0334–0340 Nadeem F, Mehmood T, Naveed M et al (2019) Protease production from Cheotomium globusum through central composite design using agricultural wastes and its immobilization for industrial exploitation. Waste Biomass Valor. https://doi.org/10.1007/s12649-019-00890-9 Romsomsa N, Chim-anagae P, Jangchud A (2010) Optimization of silk degumming protease production from Bacillus subtilis C4 using Plackett-Burman design and response surface methodology. Sci Asia 36:118–124 Santos Aguilar D, Sato JG, Sato HH (2018) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253–262 Al-Qodah Z, Daghistani H, Alananbeh K (2013) Isolation and characterization of thermostable protease producing Bacillus pumilus from thermal spring in Jordan. Afr J Microbiol Res 7(29):3711–3719 Jaswal R, Kocher G, Virk M (2008) Production of alkaline protease by Bacillus circulans using agricultural residues: a statistical approach. Ind J Biotechnol 7:356–360 Panda SK, Mishra SS, Kayitesi E et al (2016) Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Environ Res 146:161–172 Li N, Zong MH (2010) Lipases from the genus Penicillium: production, purification, characterization and applications. J Mol Catal B 66(1):43–54 Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662 Leisola M, Jokela J, Pastinen O et al (2001) Industrial use of enzymes. Eolss Publication, Oxford Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44(2):211 Devi MK, Banu AR, Gnanaprabhal GR et al (2008) Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Ind J Sci Technol 1(7):1–6 Samal BB, Karan B, Stabinsky Y (1990) Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol Bioeng 35(6):650–652 Banik RM, Prakash M (2004) Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol Res 159(2):135–140 Yadav SK, Bisht D, Shikha S et al (2011) Oxidant and solvent stable alkaline protease from Aspergillus flavus and its characterization. Afr J Biotechnol 10(43):8630–8640 Rao K, Narasu ML (2007) Alkaline protease from Bacillus firmus 7728. Afri J Biotechnol 6(21):2493–2496 Benmrad MO, Moujehed E, Elhoul MB et al (2018) Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing. Int J Biol Macromol 119:1002–1016 Dayanandan A, Kanagaraj J, Sounderraj L et al (2003) Application of an alkaline protease in leather processing: an ecofriendly approach. J Clean Prod 11(5):533–536 Ahmed SA, Al-domany RA, El-Shayeb NM et al (2008) Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res J Agric Biol Sci 4(5):434–446 Kainoor PS, Naik G (2010) Production and characterization of feather degrading keratinase from Bacillus sp. JB 99. Ind J Biotechnol 9(4):384–390 Shrinivas D, Naik G (2011) Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterior Biodegrad 65(1):29–35 Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435(1):1–16 Puente X, Sanchez LM, Gutierrez-Fernandez A et al (2005) A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 33(2):331–334 Kohli R (2013) Microbial cleaning for removal of surface contaminaton. Dev Surf Contam Clean. https://doi.org/10.1016/B978-1-4377-7879-3.00004-2 Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85(6):1735–1750 Kudrya V, Simonenko I (1994) Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Appl Microbiol Biotechnol 41(5):505–509 Barthomeuf C, Pourrat H, Pourrat A (1992) Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. J Ferment Bioeng 73(3):233–236 Da Silva RR (2017) Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Appl Biochem Biotechnol 183(1):1–19 Ni H, Chen Q, Chen F et al (2011) Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation. Afr J Biotechnol 10(37):7236–7244 Gulrajani M, Agarwal R, Chand S (2000) Degumming of silk with a fungal protease. Indian J Fibre Text Res 25(2):138–142 Mahmoodi NM, Arami M, Mazaheri F et al (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 18(2):146–151 Nakiboglu N, Toscali D, Yasa I (2001) Silver recovery from waste photographic films by using enzymatic method. Turk J Chem 25(3):349–353 Shankar S, More S, Laxman RS (2010) Recovery of silver from waste X-ray film by alkaline protease from Conidiobolus coronatus. Kathmandu Univ Sci Eng Technol 6(1):60–69 Gupta A, Khare S (2007) Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme Microbial Technol 42(1):11–16 Jaouadi B, Abdelmalek B, Jaouadi ZaraI BN (2011) The bioengineering and industrial applications of bacterial alkaline proteases: the case of SAPB and KERAB. IntechOpen, London Hou RZ, Yang Y, Li G et al (2006) Synthesis of a precursor dipeptide of RGDS (Arg-Gly-Asp-Ser) catalysed by the industrial protease alcalase. Biotechnol Appl Biochem 44(2):73–80 Wang CH, Guan Z, He YH (2011) Biocatalytic domino reaction: synthesis of 2 H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem 13(8):2048–2054 Tapia DM, Simoes MLG (2008) Production and partial characterization of keratinase produced by a microorganism isolated from poultry processing plant wastewater. Afr J Biotechnol 7(3):296–300 Kojima M, Kanai M, Tominaga M et al (2006) Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10(3):229–235 Vijayalakshmi S, Venkatkumar S, Thankamani V (2011) Screening of alkalophilic thermophilic protease isolated from Bacillus RV.B2.90 for industrial applications. Int J Res Biotechnol 2(3):32–41 Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51(3):191–196 Cortezi M, Contiero J, Lima C et al (2008) Characterization of a feather degrading by Bacillus amyloliquefaciens protease: a new strain. World J Agric Sci 4(5):648–656 Tork S, Aly M, Nawar L (2010) Biochemical and molecular characterization of a new local keratinase producing Pseudomomanas sp., MS21. Asian J Biotechnol 2(1):1–13 Ali TH, Ali NH, Mohamed LA (2011) Production, purification and some properties of extracellular keratinase from feathers-degradation by Aspergillus oryzae NRRL-447. J Appl Sci Environ Sanit 6(2):123–136 Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophy Acta (BBA) 1543(1):1–10 Silva C, Martins M, Jing S et al (2018) Practical insights on enzyme stabilization. Crit Rev Biotechnol 38(3):335–350 Xia W, Xu X, Qian L et al (2016) Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. Biotechnol Biofuels 9(1):147 Hasunuma T, Okazaki F, Okai N et al (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522 Bilal M, Iqbal HM (2019) Tailoring multipurpose biocatalysts via protein engineering approaches: a review. Catal Lett 149(8):2204–2217 Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110(7):1874–1883 Woodley JM (2018) Integrating protein engineering with process design for biocatalysis. Philos Trans R Soc A Math Phys Eng Sci 376(2110):20170062 Wang C, Huang R, He B et al (2012) Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinform 13(1):263 Blum JK, Ricketts MD, Bommarius AS (2012) Improved thermostability of AEH by combining B-FIT analysis and structure-guided consensus method. J Biotechnol 160(3–4):214–221 Jaouadi B, Aghajari N, Haser R et al (2010) Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92(4):360–369 Jaouadi NZ, Jaouadi B, Hlima HB et al (2014) Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS ONE 9(9):e108367 Ashraf NM, Krishnagopal A, Hussain A et al (2019) Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macrobiol 126:229–237 Takagi H, Morinaga Y, Ikemura H et al (1988) Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis. J Biol Chem 263(36):19592–19596 Li Y, Hu F, Wang X et al (2013) A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. J Biotechnol 163(4):401–407 Qiu Y, Wu X, Xie C et al (2016) A rational design for improving the trypsin resistance of aflatoxin-detoxifizyme (ADTZ) based on molecular structure evaluation. Enzyme Microbial Technol 86:84–92 Hu W, Liu X, Li Y et al (2017) Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzyme Microbial Technol 97:82–89 Arnold FH, Wintrode PL, Miyazaki K et al (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26(2):100–106 Porter JL, Boon PL, Murray TP et al (2015) Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search. ACS Chem Biol 10(2):611–621 Muller R, Debler EW, Steinmann M et al (2007) Bifunctional catalysis of proton transfer at an antibody active site. J Am Chem Soc 129(3):460–461 Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891 Porter JL, Rusli RA, Ollis DL (2016) Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17(3):197–203 Zhu F, He B, Gu F et al (2020) Improvement in organic solvent resistance and activity of metalloprotease by directed evolution. J Biotechnol 309:68–74 Bilal M, Zhao Y, Noreen S, Shah SZH, Bharagava RN, Iqbal HM (2019) Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. Biocatal Biotransform 37(3):159–182 Bilal M, Mehmood S, Iqbal HM (2019) Immobilized enzyme-based biocatalytic cues: an effective approach to tackle industrial effluent waste. In: Microbes for sustainable development and bioremediation. CRC Press, Boca Raton, pp 287–311 Ren S, Li C, Jiao X, Jia S, Jiang Y, Bilal M, Cui J (2019) Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem Eng J 373:1254–1278 Morsi R, Bilal M, Iqbal HM, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ 714:136572 Bilal M, Iqbal HM (2019) Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev 388:1–23 Poonsin T, Simpson BK, Visessanguan W et al (2020) Optimal immobilization of trypsin from the spleen of albacore tuna (Thunnus alalunga) and its characterization. Int J Biol Macromol 143:462–471 de Melo BM, Ceron AA, Costa SM et al (2020) Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique. Enzyme Microbiol Technol 132:109384 Awad GE, Ghanem AF, Wahab WAA et al (2020) Functionalized κ-carrageenan/hyperbranched poly (amidoamine) for protease immobilization: thermodynamics and stability studies. Int J Biol Macromol 148:1140–1155 Benucci I, Caso MC, Bavaro T et al (2020) Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Contam 110:106987 Kamini NR, Hemachander C, Mala JGS et al (1999) Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci 77(1):80–86 Racheal OO, Ahmed ATF, Ndigwe EV et al (2015) Extraction, purification and characterization of protease from Aspergillus niger isolated from yam peels. Int J Nutr Food Sci 4(2):125–131 Arunachalam C, Saritha K (2009) Protease enzyme: an eco-friendly alternative for leather industry. Indian J Sci Technol 2(12):29–32 Paranthaman R, Alagusundaram K, Indhumathi J (2009) Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World J Agric Sci 5(3):308–312 Ahmed I, Zia MA, Iftikhar T et al (2011) Characterization and detergent compatibility of purified protease produced from Aspergillus niger by utilizing agro wastes. BioResources 6(4):4505–4522 Sankeerthana C, Pinjar S, Jambagi R et al (2013) Production and Partial characterization of protease from Aspergillus flavus using rice mill waste as a substrate and its comparision with Aspergillus niger protease. Int J Curr Eng Technol 1:143–147 Ahmed I, Zia MA, Iqbal HN (2011) Purification and kinetic parameters characterization of an alkaline protease produced from Bacillus subtilis through submerged fermentation technique. World Appl Sci J 12(6):751–757 Abidi F, Aissaoui N, Lazar S et al (2014) Purification and biochemical characterization of a novel alkaline protease from Aspergillus niger use in antioxidant peptides production. J Mater Environ Sci 5(5):1490–1499 Takami H, Nakamura S, Aono R et al (1992) Degradation of human hair by a thermostable alkaline protease from alkaliphilic Bacillus sp. No. AH-101. Biosci Biotechnol Biochem 56(10):1667–1669 Upadhyay MK, Kumar R, Kumar A et al (2010) Optimization and characterization of an extracellular proteases from Aspergillus flavus MTCC 277. Afr J Agric Res 5(14):1845–1850 Ortiz GE, Noseda DG, Ponce Mora MC et al (2016) A comparative study of new Aspergillus strains for proteolytic enzymes production by solid state fermentation. Enzyme Res 2016:1–11 Singh J, Batra N, Sobti R (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochem 36(8):781–785 Kalaiarasi K, Sunitha P (2009) Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste contaminated soil. Afr J Biotechnol 8(24):7035–7041 Samarntarn W, Cheevadhanarak S, Tanticharoen M (1999) Production of alkaline protease by a genetically engineered Aspergillus oryzae U1521. J Gen Appl Microbiol 45(3):99–103 Chellapandi P (2010) Production and preliminary characterization of alkaline protease from Aspergillus flavus and Aspergillus terreus. J Chem 7(2):479–482 Adinarayana K, Ellaiah P, Prasad DS (2003) Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech 4(4):440–448 Joo HS, Kumar CG, Park GC et al (2002) Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem 38(2):155–159 Yang JK, Shih L, Tzeng YM et al (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbial Technol 26(5):406–413 Pant G, Prakash A, Pavani JVP et al (2015) Production, optimization and partial purification of protease from Bacillus subtilis. J Taiwan Univ Sci 9(1):50–55 Ahmetoglu N et al (2015) Production, purification and characterisation of thermostable metallo-protease from newly isolated Bacillus sp. KG5. Eur J BioSci 9:1–11 Jasmin C, Chellappan S, Sukumaran RK et al (2010) Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10. World J Microbiol Biotechnol 26(7):1269–1279 Haddar A, Hmidet N, Ghorbel-Bellaaj O et al (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: Application in chitin extraction, chicken feather-degradation and as a dehairing agent. Biotechnol Bioprocess Eng 16(4):669–678 Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55(11):1294–1301 Lakshmi G, Prasad N (2015) Purification and characterization of alkaline protease from a mutant Bacillus licheniformis Bl8. Adv Biol Res 9(1):15–23 Badoei-dalfard A, Khajeh K, Karami Z (2019) Protein engineering of a metalloprotease in order to improve organic solvents stability and activity. Catal Lett 150(5):1219–1229 Osire T, Yang T, Xu M et al (2019) Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J Microbiol Biotechnol 35(11):173 Zhao HY, Feng H (2018) Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnol 18(1):34 Fang Z, Zhang J, Liu B et al (2016) Enhancement of the catalytic efficiency and thermostability of S tenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF. Microb Biotechnol 9(1):35–46 Zhao HY, Wu LY, Liu G et al (2016) Single-site substitutions improve cold activity and increase thermostability of the dehairing alkaline protease (DHAP). Biosci Biotechnol Biochem 80(12):2480–2485 Van Den Berg S, Lofdahl PA, Hard T et al (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121(3):291–298 Saha S, Chowdhury J (2020) Sustained and improved enzymatic activity of trypsin immobilized in the Langmuir Blodgett film of DPPC: a rapid enzyme sensor for the detection of Azocasein. Mater Chem Phys 243:122647 Sahin S, Ozmen I (2020) Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. J Pharm Biomed Anal 184:113195 Thakrar FJ, Singh SP (2019) Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresour Technol 278:150–158 Icimoto MY, Brito AMM, Ramos MPC et al (2020) Increased stability of oligopeptidases immobilized on gold nanoparticles. Catalysis 10(1):78 Cloete WJ, Hayward S, Swart P et al (2019) Degradation of proteins and starch by combined immobilization of protease, α-amylase and β-galactosidase on a single electrospun nanofibrous membrane. Molecules 24(3):508