Does environmental data increase the accuracy of land use and land cover classification?

Leiliane Bozzi Zeferino1, Ligia Faria Tavares de Souza2, Cibele Hummel do Amaral3, Elpidio Inácio Fernandes Filho1, Teogenes Senna de Oliveira1
1Department of Soils, Federal University of Viçosa, Viçosa, Brazil
2Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
3Department of Forest Engineering, Federal University of Viçosa, Viçosa, Brazil

Tài liệu tham khảo

Anjos, 2011, 2286 Anjos, 2017, Análise do nível de legenda de classificação de áreas urbanas empregando imagens multiespectrais e hiperespectrais com os métodos árvore de decisão C4.5 e floresta randômica, Bol. Ciênc. Geod., Curitiba, 23, 371, 10.1590/s1982-21702017000200024 Arruda, 2017, Combining climatic and soil properties better covers of Brazilian biomes, Sci Nat., 104, 32, 10.1007/s00114-017-1456-6 Bakula, 2016, Testing of land cover classification from multispectral airborne laser scanning data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, Volume XLI-B7, XXIII ISPRS Congress Bauer, 1975, The role of remote sensing in determining the distribution and yield of crops, Advances in Agronomy, 27, 271, 10.1016/S0065-2113(08)70012-9 Breiman, 2001, Random forest, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Bruzzone, 1997, Multisource classification of complex rural areas by statistical and neural-network approaches, Photogramm. Eng. Remote Sensing, 63, 523 Calvão, 2015, Remote sensing in food production – a review, Emir. J. Food Agric., 27, 138, 10.9755/ejfa.v27i2.19272 Cardoso-Leite, 2005, Hamburguer, D.S. Ecologia da paisagem, Acta Botanica Brasílica, 19, 233, 10.1590/S0102-33062005000200005 Comber, 2012, Spatial analysis of remote sensing image classification accuracy, Remote Sens. Environ., 127, 237, 10.1016/j.rse.2012.09.005 Congalton, 1991, A review of assessing the accuracy of classification of remotely sensed data, Remote Sens. Environ., 37, 35, 10.1016/0034-4257(91)90048-B CONGALTON, 2009, 183 Costa, 2007, Organização comunitária de um cerrado sensu strictu no Bioma Caatinga, chapada do Araripe, Barbalha, Ceará, Acta Botanica Brasílica, 21, 281, 10.1590/S0102-33062007000200004 CURRAN, 1983, Problems in the remote sensing of vegetation canopies for biomass estimation, 84 Daughtry, 1998, Spectral discrimination of Cannabis sativa L. Leaves and canopies, Remote Sens. Env., 64, 192, 10.1016/S0034-4257(98)00002-9 Demarchi, 2018, Floristic composition, structure and soil-vegetation relations in three white-sand soil patches in central Amazonia, Acta Amazon., 48, 46, 10.1590/1809-4392201603523 Dias-Filho, 2004, Competição e sucessão vegetal em pastagens, 252 Diniz, 2013, RedFace: um sistema de reconhecimento facial baseado em técnicas de análise de componentes principais e autofaces: comparação com diferentes classificadores. Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, 5, 42 Domaç, 2006, Integration of environmental variables with satellite images in regional scale vegetation classification, Int. J. Remote Sens., 27, 1329, 10.1080/01431160500444806 Dorren, 2003, Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification, For. Ecol. Manage., 183, 31, 10.1016/S0378-1127(03)00113-0 Ducart, 2016, Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil, Braz. J. Geol., 46, 331, 10.1590/2317-4889201620160023 Duguay, 1989, A software package for integrating digital elevation models into the digital analysis of remote-sensing data, Comput. Geosci., 15, 669, 10.1016/0098-3004(89)90075-7 Fahsi, 2000, Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy, For. Ecol. Manage., 128, 57, 10.1016/S0378-1127(99)00272-8 Fahsi, 2000, Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy, For. Ecol. Manage., 128, 57, 10.1016/S0378-1127(99)00272-8 Fang, 2017, Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China, Eur. J. For. Res., 136, 689, 10.1007/s10342-017-1065-0 Foley, 1998, Ecological applications of near infrared reflectance spectroscopy - A tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance, Oecologia, 116, 293, 10.1007/s004420050591 Foody, 2002, Status of land cover classification accuracy assessment, Remote Sens. Environ., 80, 185, 10.1016/S0034-4257(01)00295-4 Framil, 2013, 58 Franklin, 1989, Ancillary data input to satellite remote sensing of complex terrain phenomena, Comput. Geosci., 15, 799, 10.1016/0098-3004(89)90082-4 Franklin, 1995, Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients, Prog. Phys. Geogr., 19, 494, 10.1177/030913339501900403 Franklin, 1991, Spatial and spectral classification of remote-sensing imagery, Comput. Geosci., 17, 1151, 10.1016/0098-3004(91)90075-O Gerçek, 2004, Improvement of image classifcation with the integration of topographical data Guedes, 2018, Sensoriamento remoto no estudo da vegetação: princípios físicos, sensores e métodos, ACTA Geográfica, 12, 127, 10.18227/2177-4307.acta.v12i29.4001 Gutman, 2002, Nasa Land Cover/Land use change program, 11 Harris, 1995, The integration of geographic data with remotely-sensed imagery to improve classification in an urban area, Photogramm. Eng. Remote Sensing, 61, 993 Hijmans, 2005, Very resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 65, 10.1002/joc.1276 HUETE, 1988, A Soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295, 10.1016/0034-4257(88)90106-X IBGE - Instituto Brasileiro de Geografia e Estatística, 2015 IBGE - Instituto Brasileiro de Geografia e Estatística, 2017 Janssen, 1990, Integrating topographic data with remote sensing for land cover classification, Photogramm. Eng. Remote Sensing, 56, 1503 Jiang, 2012, Effects of single and mixed species forest ecosystems on diversity and function of soil microbial community in subtropical China, J. Soils Sediments, 12, 228, 10.1007/s11368-011-0442-4 Kaya, 2014, Recursive feature selection based on non-parallel SVMs and its application to hyperspectral image classification Khalid, 2014, A survey of feature selection and feature extraction techniques in machine learning, 372 Knipling, 1970, Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation, Remote Sens. Environ., 1, 155, 10.1016/S0034-4257(70)80021-9 Landis, 1977, The measurements of agreement for categorical data Biometrics, Washington, 33, 159 Li, 2010, Remotely sensed images and GIS data fusion for automatic change detection, Int. J. Image Data Fusion, 1, 99, 10.1080/19479830903562074 Li, 2014, Soil bacterial communities of different natural forest types in Northeast China, Plant Soil, 383, 203, 10.1007/s11104-014-2165-y Lillesand, 2004, 763 Lopez-Paz, 2013, The randomized dependence coefficient, 1 Lu, 2007, A Survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens., 28, 823, 10.1080/01431160600746456 Lu, 2012, Land use/cover classification in the Brazilian Amazon using satellite images, Pesq. agropec. bras., 47, 1185, 10.1590/S0100-204X2012000900004 Lu, 2012, Application of time series landsat images to examining land-use/land-cover dynamic change, Photogramm. Eng. Remote Sensing, 78, 747, 10.14358/PERS.78.7.747 Lu, 2013, Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon, Int. J. Remote Sens., 34, 5953, 10.1080/01431161.2013.802825 Moges, 2005, Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield, J. Plant Nutr., 27, 1431, 10.1081/PLN-200025858 Mulder, 2011, The use of remote sensing in soil and terrain mapping: a review, Geoderma, 162, 1, 10.1016/j.geoderma.2010.12.018 Novo, 2010, 388 Perez Filho, 2007, Sistemas naturais e geografia, 01, 333 Pignatti, 2009, Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy, Remote Sens. Environ., 3, 622, 10.1016/j.rse.2008.11.006 Pinder, 1997, The relationship between vegetation type and topography in Lassen Volcanic National Park, Plant Ecol., 131, 17, 10.1023/A:1009792123571 Pinter Junior, 2003, Remote sensing for crop management, Photogramm. Eng. Remote Sensing, 647, 10.14358/PERS.69.6.647 Ponzoni, 2010, 127 Potter, 2003, Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998, Glob. Planet. Chang., 39, 201, 10.1016/j.gloplacha.2003.07.001 R Core Team, 2016 Rajendran, 2016, Vegetation analysis study in and around Sultan Qaboos University, Oman, using Geoeye-1 satellite data, Egypt. J. Remote. Sens. Space Sci., 19, 297 Ricchetti, 2000, Multispectral satellite image and ancillary data integration for geological classification, Phtogramm. Eng. Remote Sens., 66, 429 Rogan, 2002, Operational detection of changes in forest and shrub cover in California using multitemporal landsat data, Proceedings of RS2002, 08–12 April, San Diego, California, CDROM Rosa, 2009, 264 Rouse, 1973, Monitoring vegetation systems in the great plains with ERTS, Earth Resources Technology Satellite - 1 Symposium, 3, Washington, 1973. Proceedings… Whashington: NASA, 1974, 1, 309 Schmidt, 2001, Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: the Makhtesh Ramon Crater (Israel) case study, Int. J. Remote Sens., 22, 3503, 10.1080/01431160110063779 Scotford, 2005, Applications of spectral reflectance techniques in northern european cereal production: a review, Biosys. Eng., 90, 235, 10.1016/j.biosystemseng.2004.11.010 SEPLAN - Secretaria de Planejamento e Orçamento, 2016 Simonetti, 2014, 60 Smits, 1999, Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach, Int. J. Remote Sens., 20, 1461, 10.1080/014311699212560 Souza, 2009, 112 Souza, 2017, 144 Stathakis, 2014, Monitoring urban sprawl simulated PROBA-V data, Int. J. Remote Sens., 35, 2731, 10.1080/01431161.2014.883089 Stathakis, 2012, Efficient segmentation of urban areas by the VIBI, Int. J. Remote Sens., 33, 6361, 10.1080/01431161.2012.687842 Takyu, 2002, Effects of topography on tropical lower montane forest under different geological conditions on Mount Kinabalu, Borneo. Plant Ecol., 159, 35, 10.1023/A:1015512400074 Ter Steege, 2006, Continental-scale patterns of canopy tree composition and function across Amazonia, Nature, 443, 444, 10.1038/nature05134 Trietz, 2000, Integrating spectral, spatial and terrain variables for forest ecosystem classification, Photogramm. Eng. Remote Sensing, 66, 305 USGS - United States Geological Survey, 2012, 81 USGS - United States Geological Survey, 2015 USGS - United States Geological Survey, 2017, 36 Wan, 2018, Soil indicators of plant diversity for global ecoregions: implications for management practices, Glob. Ecol. Conserv., 14 Wan, 2019, Effects of soil properties on the spatial distribution of forest vegetation across China, Glob. Ecol. Conserv., 18 WORLDCLIM - Global Climate Data, 2016 Xue, 2017, Significant remote sensing vegetation indices: a review of developments and applications, J. Sens, 17 Zha, 2003, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, Int. J. Remote Sensing, 24, 583, 10.1080/01431160304987 Zukowskyj, 2003, Validation of a novel classification system: the integrated digital elevation model image classification system