Abundance and speciation of iron across a subtropical tidal marsh of the Min River Estuary in the East China Sea

Applied Geochemistry - Tập 45 - Trang 1-13 - 2014
Min Luo1,2, Cong-Sheng Zeng1, Chuang Tong1, Jia-Fang Huang1, Qiang Yu2, Yan-Bin Guo2, Shu-Hua Wang2
1School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
2School of Environment and Resource, Fuzhou University, Fuzhou 350108, China

Tài liệu tham khảo

APHA, 1999 Arndt, 2013, Quantifying the degradation of organic matter in marine sediments: a review and synthesis, Earth-Sci. Rev., 10.1016/j.earscirev.2013.02.008 Beck, 2008, Spatial and seasonal variations of sulfate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments, Estuar. Coast. Shelf Sci., 79, 307, 10.1016/j.ecss.2008.04.007 Beck, 2008, Sulfate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat, Biogeochemistry, 89, 221, 10.1007/s10533-008-9215-6 Ben-Dor, 1991, Loss on ignition as an estimator of soil organic carbon in a horizon forestry soils, Commun. Soil. Sci. Plan., 22, 233, 10.1080/00103629109368411 Berner, 1970, Sedimentary pyrite formation, Am. J. Sci., 268, 1, 10.2475/ajs.268.1.1 Billerbeck, 2006, Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment, Mar. Ecol. Prog. Ser., 326, 61, 10.3354/meps326061 Bonneville, 2009, Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy relationship, Geochim. Cosmochim. Acta, 73, 5273, 10.1016/j.gca.2009.06.006 Burton, 2006, Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes, Environ. Sci. Technol., 40, 888, 10.1021/es0516763 Burton, 2007, Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands, Geochim. Cosmochim. Acta, 71, 4456, 10.1016/j.gca.2007.07.007 Burton, 2008, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Appl. Geochem., 23, 2759, 10.1016/j.apgeochem.2008.07.007 Burton, 2009, Iron-monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions, Environ. Sci. Technol., 43, 3128, 10.1021/es8036548 Burton, 2011, Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland, Geochim. Cosmochim. Acta, 75, 3434, 10.1016/j.gca.2011.03.020 Canfield, 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta, 53, 619, 10.1016/0016-7037(89)90005-7 Canfield, 1993, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113, 27, 10.1016/0025-3227(93)90147-N Caplan, R.I., Boolootian, R.A., 1965. Intertidal Ecology of San Nicolas Island, pp 203–217. Charette, 2002, Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay, Geophys. Res. Lett., 29, 85-1, 10.1029/2001GL014512 Charette, 2004, Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay(Elizabeth River), Limnol. Oceanogr., 49, 376, 10.4319/lo.2004.49.2.0376 Charette, 2006, Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water, Geochim. Cosmochim. Acta, 70, 811, 10.1016/j.gca.2005.10.019 Claff, 2010, A sequential extraction procedure for acid sulfate soils: partitioning of iron, Geoderma, 155, 224, 10.1016/j.geoderma.2009.12.002 Cline, 1969, Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454, 10.4319/lo.1969.14.3.0454 Cook, 2004, Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. III. Sources of organic matter, Mar. Ecol. Prog. Ser., 280, 55, 10.3354/meps280055 Cornell, 2003 Cui, 2012, HPLC determination of sulfur (S) in medicinal material sulfur, Chin. Pharmaceut., 32, 123 Davy, 2011, Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes, J. Ecol., 99, 1350, 10.1111/j.1365-2745.2011.01870.x Ferreira, 2007, Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate, Geoderma, 142, 36, 10.1016/j.geoderma.2007.07.010 Gallagher, 1974, Primary production of edaphic algal communities in a Delaware salt marsh, Limnol. Oceanogr., 19, 390, 10.4319/lo.1974.19.3.0390 García-Balboa, 2011, Iron speciation in dissimilatory Fe(III)-reducing cultures, Geomicrobiol J., 28, 371, 10.1080/01490451.2010.506100 Gribsholt, 2003, Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia tidal marsh, Mar. Ecol. Prog. Ser., 259, 237, 10.3354/meps259237 Gribsholt, 2003, Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh, Limnol. Oceanogr., 48, 2151, 10.4319/lo.2003.48.6.2151 Hines, 1989, Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh, Limnol. Oceanogr., 34, 578, 10.4319/lo.1989.34.3.0578 Howarth, 1983, Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnol. Oceanogr., 28, 70, 10.4319/lo.1983.28.1.0070 Hyacinthe, 2006, Reactive iron(III) in sediments: chemical versus microbial extractions, Geochim. Cosmochim. Acta, 70, 4166, 10.1016/j.gca.2006.05.018 Hyun, 2007, Relative contributions of sulfate and iron (III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia tidal marsh, Appl. Geochem., 22, 2637, 10.1016/j.apgeochem.2007.06.005 Hyun, 2009, Rapid organic matter mineralization coupled to iron cycling in intertidal mudflats of the Han River estuary, Yellow Sea, Biogeochemistry, 92, 231, 10.1007/s10533-009-9287-y Ibáñez, 2013, Coastal marshes, 129 Jahnke, 2003, Advective pore water input of nutrients to the Satilla River Estuary, Georgia, USA, Estuar. Coast. Shelf. Sci., 56, 641, 10.1016/S0272-7714(02)00216-0 Johnston, 2011, Iron geochemical zonation in a tidally inundated acid sulfate soil wetland, Chem. Geol., 280, 257, 10.1016/j.chemgeo.2010.11.014 Jones, 1993, In situ assessment of modification of sediment properties by burrowing invertebrates, Mar. Biol., 115, 133, 10.1007/BF00349395 Keene, 2011, Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland, Biogeochemistry, 103, 263, 10.1007/s10533-010-9461-2 Kostka, 1994, Partitioning and speciation of solid phase iron in tidal marsh sediments, Geochim. Cosmochim. Acta, 58, 1701, 10.1016/0016-7037(94)90531-2 Kostka, 1995, Seasonal cycling of Fe in saltmarsh sediments, Biogeochemistry, 29, 159, 10.1007/BF00000230 Kostka, 2002, Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in tidal marsh sediments, Biogeochemistry, 60, 49, 10.1023/A:1016525216426 Kostka, 2002, The rates and pathways of carbon oxidation in bioturbated tidal marsh sediments, Limnol. Oceanogr., 47, 230, 10.4319/lo.2002.47.1.0230 Koretsky, 2003, Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA), Biogeochemistry, 64, 179, 10.1023/A:1024940132078 Kowalski, 2012, A comparative study of manganese dynamics in the water column and sediments of intertidal systems of the North Sea, Estuar. Coast. Shelf Sci., 100, 3, 10.1016/j.ecss.2011.03.011 Kristensen, 1995, Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest?, Limnol. Oceanogr., 1430, 10.4319/lo.1995.40.8.1430 Kristensen, 2000, Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand, Aquat. Microb. Ecol., 22, 199, 10.3354/ame022199 Kristensen, 2006, Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment, Limnol. Oceanogr., 51, 1557, 10.4319/lo.2006.51.4.1557 Kristensen, 2011, Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests, Biogeochemistry, 103, 143, 10.1007/s10533-010-9453-2 Lentini, 2012, Enriched iron (III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy, Front. Microbiol., 3, 404, 10.3389/fmicb.2012.00404 Li, 2012, Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers, Chin. Sci. Bull., 57, 673, 10.1007/s11434-011-4824-1 Li, 2011, Reduction of structural Fe(III) in oxyhydroxides by Shewanella decolorationis S12 and characterization of the surface properties of iron minerals, Soil Landscape Ecol., 12, 354 Limpens, 2008, Peatlands and the carbon cycle: from local processes to global implications–a synthesis, Biogeosciences, 5, 1475, 10.5194/bg-5-1475-2008 Lovley, 1987, Organic matter mineralization with the reduction of ferric iron: a review, Geomicrobiol J., 5, 375, 10.1080/01490458709385975 Lovley, 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments, Environ. Sci. Technol., 25, 1062, 10.1021/es00018a007 Lowe, 2000, Microbiological and geochemical characterization of microbial Fe(III) reduction in tidal marsh sediments, Geomicrobiol J., 17, 163, 10.1080/01490450050023836 Luther, 1988, Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh, Mar. Chem., 23, 295, 10.1016/0304-4203(88)90100-4 Luther, 1992, Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively, Mar. Chem., 40, 81, 10.1016/0304-4203(92)90049-G Luther, 1996, Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters, Geochim. Cosmochim. Acta, 60, 951, 10.1016/0016-7037(95)00444-0 McBeth, J. M., Fleming, E. J., Emerson, D., 2013. The Transition from Freshwater to Marine Iron-xidising Bacterial Lineages along a Salinity Gradient on the Sheepscot River, Maine, USA. Env. Microbiol. Rep. Nevin, 2002, Mechanisms for Fe(III) oxide reduction in sedimentary environments, Geomicrobiol J., 19, 141, 10.1080/01490450252864253 Nóbrega, 2013, Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents, Environ. Monit. Assess., 1 Otero, 2009, Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia-SP, Brazil), Geoderma, 148, 318, 10.1016/j.geoderma.2008.10.016 Percival, 1997, Measurement of physical properties of sediments, 10 Poulton, 2005, Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209, 10.1016/j.chemgeo.2004.09.003 Raiswell, 1985, Pyrite formation in euxinic and semi-euxinic sediments, Am. J. Sci., 285, 710, 10.2475/ajs.285.8.710 Redfield, 1958, The biological control of chemical factors in the environment, Am. Sci., 46, 205 Roden, 1996, Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction invegetated and unvegetated freshwater wetland sediments, Limnol. Oceanogr., 41, 1733, 10.4319/lo.1996.41.8.1733 Roden, 2002, Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments, Limnol. Oceanogr., 47, 198, 10.4319/lo.2002.47.1.0198 Roman, 1989, Organic carbon flux through a Delaware Bay salt marsh: tidal exchange, particle size distribution, and storms, Mar. Ecol. Prog. Ser. Oldendorf., 54, 149, 10.3354/meps054149 Roy, 2010, Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary, Geochim. Cosmochim. Acta, 74, 5560, 10.1016/j.gca.2010.07.007 Roychoudhury, 2003, Pyritization: a palaeoenvironmental and redox proxy reevaluated, Estuar. Coast Shelf., 57, 1183, 10.1016/S0272-7714(03)00058-1 Sandroni, 2002, Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry, Anal. Chim. Acta, 468, 335, 10.1016/S0003-2670(02)00655-4 Santos-Echeandía, 2010, Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal), Mar. Environ. Res., 70, 358, 10.1016/j.marenvres.2010.07.003 Schippers, 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. Cosmochim. Acta, 66, 85, 10.1016/S0016-7037(01)00745-1 Schulze, 1981, Identification of soil iron oxide minerals by differential x-ray diffraction, Soil Sci. Soc. Am. J., 45, 437, 10.2136/sssaj1981.03615995004500020040x Smith, 2004, Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment, Appl. Geochem., 19, 1837, 10.1016/j.apgeochem.2004.04.004 Spiteri, 2006, PH-dependent iron oxide precipitation in a subterranean estuary, J. Geochem. Explor., 88, 399, 10.1016/j.gexplo.2005.08.084 Straub, 2001, Iron metabolism in anoxic environments at near neutral pH, FEMS Microbiol. Ecol., 34, 181, 10.1111/j.1574-6941.2001.tb00768.x Taillefert, 2007, The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments, Geochem. Trans., 8, 1, 10.1186/1467-4866-8-6 Testa, 2002, Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts, Biol. Bull., 203, 255, 10.2307/1543427 Tong, 2012, Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland, Biogeochemistry, 111, 677, 10.1007/s10533-012-9712-5 Weiss, 2004, Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil, FEMS Microbiol. Ecol., 48, 89, 10.1016/j.femsec.2003.12.014 Wijsman, 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74, 261, 10.1016/S0304-4203(01)00019-6 Zachara, 2002, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB), Geomicrobiol J., 19, 179, 10.1080/01490450252864271 Zhu, 2012, Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf, Appl. Geochem., 27, 892, 10.1016/j.apgeochem.2012.01.004