Abundance and speciation of iron across a subtropical tidal marsh of the Min River Estuary in the East China Sea
Tài liệu tham khảo
APHA, 1999
Arndt, 2013, Quantifying the degradation of organic matter in marine sediments: a review and synthesis, Earth-Sci. Rev., 10.1016/j.earscirev.2013.02.008
Beck, 2008, Spatial and seasonal variations of sulfate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments, Estuar. Coast. Shelf Sci., 79, 307, 10.1016/j.ecss.2008.04.007
Beck, 2008, Sulfate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat, Biogeochemistry, 89, 221, 10.1007/s10533-008-9215-6
Ben-Dor, 1991, Loss on ignition as an estimator of soil organic carbon in a horizon forestry soils, Commun. Soil. Sci. Plan., 22, 233, 10.1080/00103629109368411
Berner, 1970, Sedimentary pyrite formation, Am. J. Sci., 268, 1, 10.2475/ajs.268.1.1
Billerbeck, 2006, Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment, Mar. Ecol. Prog. Ser., 326, 61, 10.3354/meps326061
Bonneville, 2009, Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy relationship, Geochim. Cosmochim. Acta, 73, 5273, 10.1016/j.gca.2009.06.006
Burton, 2006, Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes, Environ. Sci. Technol., 40, 888, 10.1021/es0516763
Burton, 2007, Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands, Geochim. Cosmochim. Acta, 71, 4456, 10.1016/j.gca.2007.07.007
Burton, 2008, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Appl. Geochem., 23, 2759, 10.1016/j.apgeochem.2008.07.007
Burton, 2009, Iron-monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions, Environ. Sci. Technol., 43, 3128, 10.1021/es8036548
Burton, 2011, Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland, Geochim. Cosmochim. Acta, 75, 3434, 10.1016/j.gca.2011.03.020
Canfield, 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta, 53, 619, 10.1016/0016-7037(89)90005-7
Canfield, 1993, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113, 27, 10.1016/0025-3227(93)90147-N
Caplan, R.I., Boolootian, R.A., 1965. Intertidal Ecology of San Nicolas Island, pp 203–217.
Charette, 2002, Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay, Geophys. Res. Lett., 29, 85-1, 10.1029/2001GL014512
Charette, 2004, Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay(Elizabeth River), Limnol. Oceanogr., 49, 376, 10.4319/lo.2004.49.2.0376
Charette, 2006, Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water, Geochim. Cosmochim. Acta, 70, 811, 10.1016/j.gca.2005.10.019
Claff, 2010, A sequential extraction procedure for acid sulfate soils: partitioning of iron, Geoderma, 155, 224, 10.1016/j.geoderma.2009.12.002
Cline, 1969, Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454, 10.4319/lo.1969.14.3.0454
Cook, 2004, Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. III. Sources of organic matter, Mar. Ecol. Prog. Ser., 280, 55, 10.3354/meps280055
Cornell, 2003
Cui, 2012, HPLC determination of sulfur (S) in medicinal material sulfur, Chin. Pharmaceut., 32, 123
Davy, 2011, Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes, J. Ecol., 99, 1350, 10.1111/j.1365-2745.2011.01870.x
Ferreira, 2007, Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate, Geoderma, 142, 36, 10.1016/j.geoderma.2007.07.010
Gallagher, 1974, Primary production of edaphic algal communities in a Delaware salt marsh, Limnol. Oceanogr., 19, 390, 10.4319/lo.1974.19.3.0390
García-Balboa, 2011, Iron speciation in dissimilatory Fe(III)-reducing cultures, Geomicrobiol J., 28, 371, 10.1080/01490451.2010.506100
Gribsholt, 2003, Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia tidal marsh, Mar. Ecol. Prog. Ser., 259, 237, 10.3354/meps259237
Gribsholt, 2003, Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh, Limnol. Oceanogr., 48, 2151, 10.4319/lo.2003.48.6.2151
Hines, 1989, Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh, Limnol. Oceanogr., 34, 578, 10.4319/lo.1989.34.3.0578
Howarth, 1983, Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnol. Oceanogr., 28, 70, 10.4319/lo.1983.28.1.0070
Hyacinthe, 2006, Reactive iron(III) in sediments: chemical versus microbial extractions, Geochim. Cosmochim. Acta, 70, 4166, 10.1016/j.gca.2006.05.018
Hyun, 2007, Relative contributions of sulfate and iron (III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia tidal marsh, Appl. Geochem., 22, 2637, 10.1016/j.apgeochem.2007.06.005
Hyun, 2009, Rapid organic matter mineralization coupled to iron cycling in intertidal mudflats of the Han River estuary, Yellow Sea, Biogeochemistry, 92, 231, 10.1007/s10533-009-9287-y
Ibáñez, 2013, Coastal marshes, 129
Jahnke, 2003, Advective pore water input of nutrients to the Satilla River Estuary, Georgia, USA, Estuar. Coast. Shelf. Sci., 56, 641, 10.1016/S0272-7714(02)00216-0
Johnston, 2011, Iron geochemical zonation in a tidally inundated acid sulfate soil wetland, Chem. Geol., 280, 257, 10.1016/j.chemgeo.2010.11.014
Jones, 1993, In situ assessment of modification of sediment properties by burrowing invertebrates, Mar. Biol., 115, 133, 10.1007/BF00349395
Keene, 2011, Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland, Biogeochemistry, 103, 263, 10.1007/s10533-010-9461-2
Kostka, 1994, Partitioning and speciation of solid phase iron in tidal marsh sediments, Geochim. Cosmochim. Acta, 58, 1701, 10.1016/0016-7037(94)90531-2
Kostka, 1995, Seasonal cycling of Fe in saltmarsh sediments, Biogeochemistry, 29, 159, 10.1007/BF00000230
Kostka, 2002, Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in tidal marsh sediments, Biogeochemistry, 60, 49, 10.1023/A:1016525216426
Kostka, 2002, The rates and pathways of carbon oxidation in bioturbated tidal marsh sediments, Limnol. Oceanogr., 47, 230, 10.4319/lo.2002.47.1.0230
Koretsky, 2003, Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA), Biogeochemistry, 64, 179, 10.1023/A:1024940132078
Kowalski, 2012, A comparative study of manganese dynamics in the water column and sediments of intertidal systems of the North Sea, Estuar. Coast. Shelf Sci., 100, 3, 10.1016/j.ecss.2011.03.011
Kristensen, 1995, Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest?, Limnol. Oceanogr., 1430, 10.4319/lo.1995.40.8.1430
Kristensen, 2000, Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand, Aquat. Microb. Ecol., 22, 199, 10.3354/ame022199
Kristensen, 2006, Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment, Limnol. Oceanogr., 51, 1557, 10.4319/lo.2006.51.4.1557
Kristensen, 2011, Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests, Biogeochemistry, 103, 143, 10.1007/s10533-010-9453-2
Lentini, 2012, Enriched iron (III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy, Front. Microbiol., 3, 404, 10.3389/fmicb.2012.00404
Li, 2012, Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers, Chin. Sci. Bull., 57, 673, 10.1007/s11434-011-4824-1
Li, 2011, Reduction of structural Fe(III) in oxyhydroxides by Shewanella decolorationis S12 and characterization of the surface properties of iron minerals, Soil Landscape Ecol., 12, 354
Limpens, 2008, Peatlands and the carbon cycle: from local processes to global implications–a synthesis, Biogeosciences, 5, 1475, 10.5194/bg-5-1475-2008
Lovley, 1987, Organic matter mineralization with the reduction of ferric iron: a review, Geomicrobiol J., 5, 375, 10.1080/01490458709385975
Lovley, 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments, Environ. Sci. Technol., 25, 1062, 10.1021/es00018a007
Lowe, 2000, Microbiological and geochemical characterization of microbial Fe(III) reduction in tidal marsh sediments, Geomicrobiol J., 17, 163, 10.1080/01490450050023836
Luther, 1988, Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh, Mar. Chem., 23, 295, 10.1016/0304-4203(88)90100-4
Luther, 1992, Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively, Mar. Chem., 40, 81, 10.1016/0304-4203(92)90049-G
Luther, 1996, Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters, Geochim. Cosmochim. Acta, 60, 951, 10.1016/0016-7037(95)00444-0
McBeth, J. M., Fleming, E. J., Emerson, D., 2013. The Transition from Freshwater to Marine Iron-xidising Bacterial Lineages along a Salinity Gradient on the Sheepscot River, Maine, USA. Env. Microbiol. Rep.
Nevin, 2002, Mechanisms for Fe(III) oxide reduction in sedimentary environments, Geomicrobiol J., 19, 141, 10.1080/01490450252864253
Nóbrega, 2013, Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents, Environ. Monit. Assess., 1
Otero, 2009, Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia-SP, Brazil), Geoderma, 148, 318, 10.1016/j.geoderma.2008.10.016
Percival, 1997, Measurement of physical properties of sediments, 10
Poulton, 2005, Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209, 10.1016/j.chemgeo.2004.09.003
Raiswell, 1985, Pyrite formation in euxinic and semi-euxinic sediments, Am. J. Sci., 285, 710, 10.2475/ajs.285.8.710
Redfield, 1958, The biological control of chemical factors in the environment, Am. Sci., 46, 205
Roden, 1996, Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction invegetated and unvegetated freshwater wetland sediments, Limnol. Oceanogr., 41, 1733, 10.4319/lo.1996.41.8.1733
Roden, 2002, Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments, Limnol. Oceanogr., 47, 198, 10.4319/lo.2002.47.1.0198
Roman, 1989, Organic carbon flux through a Delaware Bay salt marsh: tidal exchange, particle size distribution, and storms, Mar. Ecol. Prog. Ser. Oldendorf., 54, 149, 10.3354/meps054149
Roy, 2010, Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary, Geochim. Cosmochim. Acta, 74, 5560, 10.1016/j.gca.2010.07.007
Roychoudhury, 2003, Pyritization: a palaeoenvironmental and redox proxy reevaluated, Estuar. Coast Shelf., 57, 1183, 10.1016/S0272-7714(03)00058-1
Sandroni, 2002, Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry, Anal. Chim. Acta, 468, 335, 10.1016/S0003-2670(02)00655-4
Santos-Echeandía, 2010, Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal), Mar. Environ. Res., 70, 358, 10.1016/j.marenvres.2010.07.003
Schippers, 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. Cosmochim. Acta, 66, 85, 10.1016/S0016-7037(01)00745-1
Schulze, 1981, Identification of soil iron oxide minerals by differential x-ray diffraction, Soil Sci. Soc. Am. J., 45, 437, 10.2136/sssaj1981.03615995004500020040x
Smith, 2004, Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment, Appl. Geochem., 19, 1837, 10.1016/j.apgeochem.2004.04.004
Spiteri, 2006, PH-dependent iron oxide precipitation in a subterranean estuary, J. Geochem. Explor., 88, 399, 10.1016/j.gexplo.2005.08.084
Straub, 2001, Iron metabolism in anoxic environments at near neutral pH, FEMS Microbiol. Ecol., 34, 181, 10.1111/j.1574-6941.2001.tb00768.x
Taillefert, 2007, The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments, Geochem. Trans., 8, 1, 10.1186/1467-4866-8-6
Testa, 2002, Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts, Biol. Bull., 203, 255, 10.2307/1543427
Tong, 2012, Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland, Biogeochemistry, 111, 677, 10.1007/s10533-012-9712-5
Weiss, 2004, Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil, FEMS Microbiol. Ecol., 48, 89, 10.1016/j.femsec.2003.12.014
Wijsman, 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74, 261, 10.1016/S0304-4203(01)00019-6
Zachara, 2002, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB), Geomicrobiol J., 19, 179, 10.1080/01490450252864271
Zhu, 2012, Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf, Appl. Geochem., 27, 892, 10.1016/j.apgeochem.2012.01.004