Effective enhancement of piezomagnetic effect in core/shell structured cobalt/manganese-zinc nanocomposite
Tài liệu tham khảo
Engdahl, 2000
Nan, 2008, Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., 103, 10.1063/1.2836410
Chu, 2018, Review of multi-layered magnetoelectric composite materials and devices applications, J. Phys. D, 51, 10.1088/1361-6463/aac29b
Chu, 2018, Dual-stimulus magnetoelectric energy harvesting, MRS Bull., 43, 199, 10.1557/mrs.2018.31
Amiri, 2013, The role of cobalt ferrite magnetic nanoparticles in medical science, Mater. Sci. Eng. C Mater. Biol. Appl., 33, 1, 10.1016/j.msec.2012.09.003
Kambale, 2012, Magnetic and magnetostrictive behavior of Dy3+ doped CoFe2O4 single crystals grown by flux method, J. Cryst. Growth, 340, 171, 10.1016/j.jcrysgro.2011.12.007
Song, 2007, Magnetic and magnetoelastic properties of Ga-substituted cobalt ferrite, J. Appl. Phys., 101, 10.1063/1.2712941
Bhame, 2006, Enhanced magnetostrictive properties of Mn substituted cobalt ferrite Co1.2Fe1.8O4, J. Appl. Phys., 99, 10.1063/1.2183356
Nlebedim, 2013, Temperature dependence of the structural, magnetic, and magnetostrictive properties of zinc-substituted cobalt ferrite, J. Appl. Phys., 113, 10.1063/1.4804963
Gore, 2017, The structural and magnetic properties of dual phase cobalt ferrite, Sci. Rep., 7, 2524, 10.1038/s41598-017-02784-z
Caltun, 2007, The influence of Mn doping level on magnetostriction coefficient of cobalt ferrite, J. Magn. Magn. Mater., 316, e618, 10.1016/j.jmmm.2007.03.045
Tsay, 2015, Magnetic, magnetostrictive, and AC impedance properties of manganese substituted cobalt ferrites, Ceram. Int., 41, 5531, 10.1016/j.ceramint.2014.12.129
Anantharamaiah, 2017, Tuning of the magnetostrictive properties of cobalt ferrite by forced distribution of substituted divalent metal ions at different crystallographic sites, J. Appl. Phys., 121, 10.1063/1.4977758
Mohaideen, 2012, Enhancement in the magnetostriction of sintered cobalt ferrite by making self-composites from nanocrystalline and bulk powders, ACS Appl. Mater. Interfaces, 4, 6421, 10.1021/am302053q
Khaja Mohaideen, 2012, High magnetostriction and coupling coefficient for sintered cobalt ferrite derived from superparamagnetic nanoparticles, Appl. Phys. Lett., 101, 10.1063/1.4745922
Zheng, 2011, Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline CoFe2O4, J. Appl. Phys., 110, 10.1063/1.3624661
Wei, 2011, Multifunctional composite core-shell nanoparticles, Nanoscale, 3, 4474, 10.1039/c1nr11000d
López-Ortega, 2015, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep., 553, 1, 10.1016/j.physrep.2014.09.007
Lee, 2011, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol., 6, 418, 10.1038/nnano.2011.95
Kuila, 2018, Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites, J. Appl. Phys., 123, 10.1063/1.5008542
Lavorato, 2014, Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles, Nanotechnology, 25, 10.1088/0957-4484/25/35/355704
Yu, 2013, Synthesis and magnetic properties of BaTiO3-CoxFe3-xO4 core-shell particles by homogeneous coprecipitation, J. Electroceram., 31, 96, 10.1007/s10832-013-9802-3
Zhang, 2009, Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure, J. Alloys Compd., 469, 422, 10.1016/j.jallcom.2008.01.152
Skomski, 1993, Giant energy product in nanostructured two-phase magnets, Phys. Rev. B Condens Matter., 48, 15812, 10.1103/PhysRevB.48.15812
Kumar, 2011, Influence of Al3+ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite, J. Magn. Magn. Mater., 323, 2042, 10.1016/j.jmmm.2011.03.010
Rondinone, 2000, Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles, Appl. Phys. Lett., 76, 3624, 10.1063/1.126727
Jalaiah, 2017, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method, J. Magn. Magn. Mater., 423, 275, 10.1016/j.jmmm.2016.09.114
Keluskar, 2006, High permeability of low loss Mn–Zn ferrite obtained by sintering nanoparticle Mn–Zn ferrite, J. Magn. Magn. Mater., 305, 296, 10.1016/j.jmmm.2006.01.018
Dalven, 1990
Chen, 2001, Magnetomechanical effects under torsional strain in iron, cobalt and nickel, J. Magn. Magn. Mater., 236, 131, 10.1016/S0304-8853(01)00160-3
Bhame, 2007, Magnetic and magnetostrictive properties of manganese substituted cobalt ferrite, J. Phys. D Appl. Phys., 40, 3263, 10.1088/0022-3727/40/11/001
Anantharamaiah, 2016, Enhancing the strain sensitivity of CoFe(2)O(4) at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe, Phys. Chem. Chem. Phys., 18, 10516, 10.1039/C6CP00369A
Yao, 2016, Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery, J. Alloys Compd., 680, 73, 10.1016/j.jallcom.2016.04.092
Mohaideen, 2014, Studies on the effect of sintering conditions on the magnetostriction characteristics of cobalt ferrite derived from nanocrystalline powders, J. Eur. Ceram. Soc., 34, 677, 10.1016/j.jeurceramsoc.2013.09.018
Khaja Mohaideen, 2014, High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering, J. Magn. Magn. Mater., 371, 121, 10.1016/j.jmmm.2014.07.013
Muhammad, 2012, Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4, J. Appl. Phys., 111, 10.1063/1.3675489
Nlebedim, 2014, Dependence of the magnetostrictive properties of cobalt ferrite on the initial powder particle size distribution, J. Appl. Phys., 115, 10.1063/1.4867343