Sobolev stability of the Positive Mass Theorem and Riemannian Penrose Inequality using inverse mean curvature flow

General Relativity and Gravitation - Tập 51 - Trang 1-32 - 2019
Brian Allen1
1US Military Academy, West Point, USA

Tóm tắt

We study the Sobolev stability of the Positive Mass Theorem and the Riemannian Penrose Inequality in the case where a region of a sequence of manifolds $$M^3_i$$ can be foliated by a smooth solution of inverse mean curvature flow (IMCF) which is uniformly controlled for time $$t \in [0,T]$$ . In particular, we consider a sequence of regions of manifolds $$U_T^i\subset M_i^3$$ , foliated by a IMCF, $$\Sigma _t$$ , such that if $$\partial U_T^i = \Sigma _0^i \cup \Sigma _T^i$$ and $$m_H(\Sigma _T^i) \rightarrow 0$$ then $$U_T^i$$ converges in $$W^{1,2}$$ to a flat annulus or in the hyperbolic setting it converges to a annulus portion of hyperbolic space. If instead $$m_H(\Sigma _T^i)-m_H(\Sigma _0^i) \rightarrow 0$$ and $$m_H(\Sigma _T^i) \rightarrow m >0$$ then we show that $$U_T^i$$ converges in $$W^{1,2}$$ to a topological annulus portion of the Schwarzschild metric or in the Hyperbolic case to a topological annulus portion of the Anti-de Sitter Schwarzschild metric.

Tài liệu tham khảo

Abbott, L.F., Deser, S.: Stability of gravity with a cosmological constant. Nucl. Phys. B 195(1), 76–96 (1982) Allen, B.: Inverse mean curvature flow and the stability of the PMT and RPI under \(L^2\) convergence. Ann. Henri Poincaré 19(4), 1283–1306 (2018) Allen, B.: Stability of the PMT and RPI for asymptotically hyperbolic manifolds foliated by IMCF. J. Math. Phys. 59, 082501 (2018) Allen, B.: Long Time Existence of Inverse Mean Curvature Flow in Metrics Conformal to Warped Product Manifolds. arXiv:1708.02535 [math.DG] (2017) Allen, B.: Inverse Mean Curvature Flow and the Stability of the Positive Mass Theorem. arXiv:1807.08822 [math.DG] (2018) Allen, B., Sormani, C.: Contrasting Various Notions of Convergence in Geometric Analysis. arXiv:1803.06582 [math.MG] (2018) Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008) Ashtekar, A., Megnon, A.: Asymptotically anti-de Sitter space–times. Class. Quantum Gravity 1(4), L39–L44 (1984) Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001) Bray, H., Finster, F.: Curvature estimates and the positive mass theorem. Commun. Anal. Geom. 2, 291–306 (2002) Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the anti-de Sitter–Schwarzschild manifold. Commun. Pure Appl. Math. 69(1), 124–144 (2016) Bryden, E.: Stability of the Positive Mass Theorem for Axisymmetric Manifolds. arXiv:1806.02447 [math.DG] (2018) Cabrera Pacheco, A.J.: On the Stability of the Positive Mass Theorem for Asymptotically Hyperbolic Graphs. arXiv:1803.01899 [math.DG] (2018) Chruściel, P., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 2, 393–443 (2003) Corvino, J.: A note on asymptotically flat metrics on \(\mathbb{R}^{3}\) which are scalar-flat and admit minimal spheres. Proc. Am. Math. Soc. 12, 3669–3678 (2005). (electronic) Dahl, M., Gicquaud, R., Sakovich, A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré 14(5), 1135–1168 (2013) Dahl, M., Gicquaud, R., Sakovich, A.: Asymptotically hyperbolic manifolds with small mass. Commun. Math. Phys. 325, 757–801 (2014) de Lima, L.L., Girão, F.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann. Henri Poincaré 17(4), 979–1002 (2016) Ding, Q.: The inverse mean curvature flow in rotationally symmetric spaces. Chin. Ann. Math. Ser. B 32(1), 27–44 (2011) Finster, F.: A level set analysis of the Witten spinor with applications to curvature estimates. Math. Res. Lett. 1, 41–55 (2009) Finster, F., Kath, I.: Curvature estimates in asymptotically flat manifolds of positive scalar curvature. Commun. Anal. Geom. 5, 1017–1031 (2002) Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32, 299–314 (1990) Gerhardt, C.: Inverse curvature flows in hyperbolic space. J. Differ. Geom. 89, 487–527 (2011) Geroch, R.: Energy extraction. Ann. N. Y. Acad. Sci. 224, 108–117 (1973) Gibbons, G.W., Hawking, S.W., Horowitz, G.T., Perry, M.J.: Positive mass theorems for black holes. Commun. Math. Phys. 88(3), 295–308 (1983) Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982) Huang, L.-H., Lee, D., Sormani, C.: Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. J. fur die Riene und Ang. Math. (Crelle’s Journal) 727, 1–299 (2015) Hung, P.-K., Wang, M.-T.: Inverse mean curvature flows in the hyperbolic 3-space revisited. Calc. Var. PDE 54, 119–126 (2015) Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001) Lee, D.: On the near-equality case of the positive mass theorem. Duke Math. J. 1, 63–80 (2009) Lee, D., Sormani, C.: Near-equality in the Penrose inequality for rotationally symmetric Riemannian manifolds. Ann. Henri Poinc. 13, 1537–1556 (2012) Lee, D., Sormani, C.: Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds. J. fur die Riene und Ang. Math. (Crelle’s Journal) 686, 187–220 (2014) LeFloch, P., Mardare, C.: Definition and stability of Lorentzian manifolds with distributional curvature. Portugaliae Mathematica 64, 535–574 (2007) LeFloch, P., Sormani, C.: The nonlinear stability of spaces with low regularity. J. Funct. Anal. 268(7), 2005–2065 (2015) Neves, A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84, 191–229 (2010) Petersen, P.: Convergence theorems in riemannian geometry. In: Grove, K., Petersen, P. (eds.) Comparison Geometry, vol. 30, pp. 167–202. MSRI Publications, Cambridge University Press, Cambridge (1997) Petersen, P., Wei, G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7, 1031–1045 (1997) Sakovich, A., Sormani, C.: Almost rigidity of the positive mass theorem for asymptotically hyperbolic manifolds with spherical symmetry. Gen. Relativ. Gravit. 49, 125 (2017) Scheuer, J.: The inverse mean curvature flow in warped cylinders of non-positive radial curvature. Adv. Math. 306, 1130–1163 (2017) Scheuer, J.: Inverse curvature flows in Riemannian warped products. J. Funct. Anal. 276(4), 1097–1144 (2019) Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–46 (1979) Urbas, J.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. A. 205, 355–372 (1990) Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 2, 273–299 (2001) Zhou, H.: Inverse mean curvature flows in warped product manifolds. J. Geom. Anal. 28(2), 1749–1772 (2018)