Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition

Journal of Materials Processing Technology - Tập 211 - Trang 1146-1158 - 2011
Bernd Baufeld1, Erhard Brandl2, Omer van der Biest1
1Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Belgium
2EADS Innovation Works, Metallic Technologies & Surface Engineering, Munich, Germany

Tài liệu tham khảo

Ahmed, 1998, Phase transformations during cooling in α+β titanium alloys, Mater. Sci. Eng. A, 243, 206, 10.1016/S0921-5093(97)00802-2 Banerjee, 2003, Microstructural evolution in laser deposited compositionally graded [alpha]/[beta] titanium–vanadium alloys, Acta Mater., 51, 3277, 10.1016/S1359-6454(03)00158-7 Baufeld, 2009, Mechanical properties of Ti–6Al–4V specimens produced by Shaped Metal Deposition, Sci. Tech. Adv. Mater., 10, 10, 10.1088/1468-6996/10/1/015008 Baufeld, 2009, Microstructure of Ti–6Al–4V specimens produced by Shaped Metal Deposition, Int. J. Mater. Res., 100, 1536, 10.3139/146.110217 Baufeld, 2010, Additive manufacturing of Ti–6Al–4V components by Shaped Metal Deposition: microstructure and mechanical properties, Mater. Des., 31, S106, 10.1016/j.matdes.2009.11.032 Baufeld, B., van der Biest, O., Gault, R., Ridgway, K., 2010b. Manufacturing Ti–6Al–4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties, TRAM 2009. IOP Conference Series: Materials Science and Engineering Sheffield, UK. Bergmann, 2004, Laserstrahlschweißen von Titanwerkstoffen unter Berücksichtigung des Einflusses des Sauerstoffes, Materialwissenschaft und Werkstofftechnik, 35, 543, 10.1002/mawe.200400776 Boyer, 1994 Brandl, 2010, Additive manufactured Ti–6Al–4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications, Phys. Procedia, 5, 595, 10.1016/j.phpro.2010.08.087 Brandl, 2009, Deposition of Ti–6Al–4V using Nd:YAG laser & wire: microstructure and mechanical properties, 1 Brandl, 2009 Brandl, 2008, Wire Inste Ad of Powder? Properties of Additive Manufactured Ti–6Al–4V for Aerospace Applications DeutscheNorm, 1978 DeutscheNorm, 1990. Wämebehandlung von Titan-Knetlegierungen. Deutsches Institut für Normung DIN 65084. DeutscheNorm, 2001 Dowling, 2007 Gil, 2001, Formation of [alpha]-Widmanstatten structure: effects of grain size and cooling rate on the Widmanstatten morphologies and on the mechanical properties in Ti6Al4V alloy, J. Alloys Compd., 329, 142, 10.1016/S0925-8388(01)01571-7 Jovanovic, 2006, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy, Mater. Des., 27, 192, 10.1016/j.matdes.2004.10.017 Kellerer, 1970, Übersicht über die Wärmebehandlung von TiAl6V4, Härterei-Techn. Mitt., 25, 242 Kelly, 2004 Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti–6Al–4V builds. Part II. Thermal modeling, Metall. Mater. Trans. A, 35A, 1869, 10.1007/s11661-004-0095-7 Kobryn, 2001, Mechanical properties of laser-deposited Ti–6Al–4V Lütjering, 2003 Lütjering, 2007 Marmi, 2009, Multiaxial fatigue damage modelling at macro scale of Ti–6Al–4V alloy, Int. J. Fatigue, 31, 2031, 10.1016/j.ijfatigue.2009.03.003 Mok, 2008, Deposition of Ti–6Al–4V using a high power diode laser and wire. Part I. Investigation on the process characteristics, Surf. Coat. Technol., 202, 3933, 10.1016/j.surfcoat.2008.02.008 Mok, 2008, Deposition of Ti–6Al–4V using a high power diode laser and wire. Part II. Investigation on the mechanical properties, Surf. Coat. Technol., 202, 4613, 10.1016/j.surfcoat.2008.03.028 Nalla, 2002, Influence of microstructure on high-cycle fatigue of Ti–6Al–4V: bimodal vs. lamellar structures, Metall. Mater. Trans., 899, 10.1007/s11661-002-1023-3 Peters, 2003 SAE Aerospace, S., 2003. Heat treatment of titanium and titanium alloys. Aerospace Material Specification, AMS-H-81200A. Sparks, R.B., Long, J.R., 1974. Improved manufacturing methods for producing high integrity more reliable titanium forgings. AFML-TR-73-301. Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004 Vanderesse, 2008, Three-dimensional microtomographic study of Widmanstatten microstructures in an alpha/beta titanium alloy, Scripta Mater., 58, 512, 10.1016/j.scriptamat.2007.11.005 Welsch, 1998 Williams, 1984 Williams, J.C., Lütjering, G., 1981. Titanium’80 Science and Technology TMS-AIME.