Self-assembly of reduced molybdophosphate-based supramolecular architectures and the study of their magnetic properties

Springer Science and Business Media LLC - Tập 34 - Trang 571-577 - 2009
Xin-Xin Xu1, Xia Zhang1, Xiao-Xia Liu1, Ting Sun1, Yu-Hong Wang1
1Department of Chemistry, College of Science, Northeast University, Shenyang, People’s Republic of China

Tóm tắt

Reduced molybdophosphate-based supramolecular compounds, such as (4,4′-H2bipy)[Co(H2O)2]2[Co(H2PO4)2(HPO4)4(PO4)2(MoO2)12(OH)6] · 17H2O (1), [Co(2,2′-bipy)2(H2O)]4[Co(H2O)2][Co(HPO4)6(PO4)2(MoO2)12(OH)6] · 2H2O (2), and [Co(2,2′-bipy)2(H2O)]4[Co(H2PO4)(H2O)2]2[Co(HPO4)6(PO4)2(MoO2)12(OH)6] · 8H2O (3) (4,4′-bipy=4,4′-bipyridine, 2,2′-bipy=2,2′-bipyridine), have been synthesized under hydrothermal conditions and characterized. Compound 1 exhibits a three-dimensional supramolecular twofold interpenetrating architecture built up of one-dimensional [P4Mo6]-based infinite covalent chains and free 4,4′-bipy molecules. Compound 2 also shows a three-dimensional supramolecular network constructed from one-dimensional covalent [P4Mo6]-based chains. Unlike compounds 1 and 2, compound 3 exhibits an interesting three-dimensional ‘honeycomb-like’ supramolecular network constructed by the stacking of [Co(2,2′-bipy)2(H2O)] units with one-dimensional channels, in which the [P4Mo6]-based polyoxometalate chains are located. The magnetic properties of compounds 2 and 3 are reported.

Tài liệu tham khảo

Liu CS, Chen PQ, Yang EC, Tian JL, Bu XH, Li ZM, Sun HW, Lin ZY (2006) Inorg Chem 45:5812. doi:10.1021/ic060087a Zhou LJ, Wang YY, Zhou CH, Wang CJ, Shi QZ, Peng SM (2007) Crystal Growth Des 7:300. doi:10.1021/cg060369l Zhang JP, Kitagawa S (2008) J Am Chem Soc 130:907. doi:10.1021/ja075408b Westcott A, Fisher J, Harding LP, Rizkallah P, Hardie MJ (2008) J Am Chem Soc 130:2950. doi:10.1021/ja8002149 Kasai K, Fujita M (2007) Chem Eur J 13:3089. doi:10.1002/chem.200501067 Luan XJ, Cai XH, Wang YY, Li DS, Wang CJ, Liu P, Hu HM, Shi QZ, Peng SM (2006) Chem Eur J 12:6281. doi:10.1002/chem.200501559 Akutagawa T, Endob D, Noroa SI, Cronin L, Nakamura T (2007) Coord Chem Rev 251:2547. doi:10.1016/j.ccr.2007.08.015 Pradeep CP, Long DL, Newton GN, Song YF, Cronin L (2008) Angew Chem Int Ed 47:4388. doi:10.1002/anie.200800431 Cao RG, Liu SX, Xie LH, Pan YB, Cao JF, Ren YH, Xu L (2007) Inorg Chem 46:3541. doi:10.1021/ic062208c Xie YM, Zhang QS, Zhao ZG, Wu XY, Chen SC, Lu CZ (2008) Inorg Chem 47:8086. doi:10.1021/ic800827a Lu Y, Xu Y, Li YG, Wang EB, Xu XX, Ma Y (2006) Inorg Chem 45:2055. doi:10.1021/ic0515857 Lan YQ, Li SL, Wang XL, Shao KZ, Du DY, Zang HY, Su ZM (2008) Inorg Chem 47:8179. doi:10.1021/ic800702d Wang XL, Bi YF, Chen BK, Lin HY, Liu GC (2008) Inorg Chem 47:2442. doi:10.1021/ic7014513 Liao JH, Juang JS, Lai YC (2006) Crystal Growth Des 6:354. doi:10.1021/cg050283c Duval S, Pilette MA, Sokolov M, Cadot E (2008) Chem Eur J 14:3457. doi:10.1002/chem.200701152 Streb C, McGlone T, Brcher O, Long DL, Cronin L (2008) Chem Eur J 14:8861. doi:10.1002/chem.200801247 Ma Y, Li YG, Wang EB, Lu Y, Wang XL, Xiao DR, Xu XX (2007) Inorg Chim Acta 360:421. doi:10.1016/j.ica.2006.06.027 Ma Y, Li YG, Wang EB, Lu Y, Wang XL, Xu XX (2007) J Solid State Chem 179:2367. doi:10.1016/j.jssc.2006.04.031 Wang ST, Wang EB, Hou Y, Li YG, Wang L, Yuan M, Hu CW (2003) Trans Metal Chem 28:616. doi:10.1023/A:1025464124210 Guo HX, Liu SX (2004) Inorg Chem Commun 7:1217. doi:10.1016/j.inoche.2004.09.010 Guo HX, Liu SX (2005) J Mol Struct 741:229. doi:10.1016/j.molstruc.2005.02.006 Sheldrick GM (1997) SHELXS—97. University of Göttingen, Göttingen, Germany Sheldrick GM (1997) SHELXL—97. University of Göttingen, Göttingen, Germany Sheldrick GM (2008) Acta Cryst A64:112. doi:10.1107/S0108767307043930 Brown ID, Altermatt D (1985) Acta Cryst B41:244. doi:10.1107/S0108768185002063