Preparation of ion-exchange materials and membranes

Desalination - Tập 342 - Trang 156-174 - 2014
Claus Vogel1, Jochen Meier‐Haack1
1Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Xu, 2005, Ion exchange membranes: state of their development and perspective, J. Membr. Sci., 263, 1, 10.1016/j.memsci.2005.05.002

Nagarale, 2006, Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 119, 97, 10.1016/j.cis.2005.09.005

Güler, 2013, Performance-determining membrane properties in reverse electrodialysis, J. Membr. Sci., 446, 266, 10.1016/j.memsci.2013.06.045

Strathmann, 1995, Electrodialysis and related processes

Couture, 2011, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521, 10.1016/j.progpolymsci.2011.04.004

Park, 2011, Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Prog. Polym. Sci., 36, 1443, 10.1016/j.progpolymsci.2011.06.001

Bose, 2011, Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges, Prog. Polym. Sci., 36, 813, 10.1016/j.progpolymsci.2011.01.003

Maier, 2008, Sulfonated aromatic polymers for fuel cell membranes, Adv. Polym. Sci., 216, 1

Nasef, 2012, Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions, Prog. Polym. Sci., 37, 1597, 10.1016/j.progpolymsci.2012.07.004

Yu, 2003, Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells, Phys. Chem. Chem. Phys., 5, 611, 10.1039/b209020a

Stone, 1995, Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom

Hodgdon, 1968, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules, J. Polym. Sci., Part A1, 6, 171, 10.1002/pol.1968.150060116

Wieser, 2004, Novel polymer electrolyte membranes for automotive applications — requirements and benefits, Fuel Cells, 4, 245, 10.1002/fuce.200400038

Kreuer, 2008, Short-side-chain proton conducting perfluorosulfonic acid ionomers: why they perform better in PEM fuel cells, J. Power Sources, 178, 499, 10.1016/j.jpowsour.2007.11.011

2009

2012

2004

2008

Asquith, 2013, Side-chain sulfonated copolymer cation exchange membranes for electro-driven desalination applications, Desalination, 324, 93, 10.1016/j.desal.2013.05.023

Kang, 2003, Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes, J. Membr. Sci., 216, 39, 10.1016/S0376-7388(03)00045-0

Yamabe, 2000, Novel phosphonated perfluorocarbon polymers, Eur. Polym. J., 36, 1035, 10.1016/S0014-3057(99)00158-5

Kreuer, 2004, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology, Chem. Rev., 104, 4637, 10.1021/cr020715f

Vogel, 2011, Side-chain sulfonated random and multiblock poly(ether sulfone)s for PEM aplications, React. Funct. Polym., 71, 824, 10.1016/j.reactfunctpolym.2011.04.006

Liu, 2010, Enhanced thermo-oxidative stability of sulfophenylated poly(ether sulfone)s, Polymer, 51, 403, 10.1016/j.polymer.2009.12.014

Matsumoto, 2009, Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane, Macromolecules, 42, 1161, 10.1021/ma802637w

Matsumoto, 2009, Locally sulfonated poly(ether sulfone)s with highly sulfonated units as proton exchange membranes, J. Polym. Sci., Part A: Polym. Chem, 47, 3444, 10.1002/pola.23403

Abouzari-Lotf, 2011, Phosphonated poly(arylene ether)s as potential high temperature proton conducting materials, Polymer, 52, 4709, 10.1016/j.polymer.2011.08.020

Lee, 2010, Synthesis and characterization of multiblock copolymers based on hydrophilic disulfonated poly(arylene ether sulfone) and hydrophobic partially fluorinated poly(arylene ether ketone), J. Polym. Sci., Part A: Polym. Chem., 48, 214, 10.1002/pola.23780

Schönberger, 2010, Partially fluorinated poly(arylene ether)s: investigation of the dependence of monomeric structures on polymerisability and degradation during sulfonation, Polymer, 51, 4299, 10.1016/j.polymer.2010.07.022

Zhang, 2009, Synthesis and characterization of sulfonated poly(arylene ether phosphine oxide)s with fluorenyl groups by direct polymerization for proton exchange membranes, J. Membr. Sci., 329, 99, 10.1016/j.memsci.2008.12.021

Tian, 2010, Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake, J. Power Sources, 195, 97, 10.1016/j.jpowsour.2009.06.085

Zhang, 2009, Novel side-chain-type poly(arylene ether ketone) with pendant sulfoalkyl groups for direct methanol fuel cells, Polymer, 50, 4471, 10.1016/j.polymer.2009.07.036

Ye, 2008, Influences of casting solvents on proton dynamics within sulfonated polyether ether ketones (S-PEEKs) studied by using high-resolution solid-state NMR, J. Membr. Sci., 319, 238, 10.1016/j.memsci.2008.03.039

Kumar, 2012, Proton-conducting poly(phenylene oxide)-poly(vinyl benzyl phosphonic acid) block copolymers via atom transfer radical polymerization, Macromol. Chem. Phys., 213, 489, 10.1002/macp.201100429

Li, 2007, Effect of heating and stretching membrane on ionic conductivity of sulfonated poly(phenylene oxide), J. Membr. Sci., 287, 180, 10.1016/j.memsci.2006.10.015

Rager, 2007, Poly(1,3-phenylene-5-phosphonic acid), a fully aromatic polyelectrolyte with high ion exchange capacity, Adv. Mater., 19, 3317, 10.1002/adma.200602788

Li, 2009, Novel hydrophilic–hydrophobic multiblock copolyimides as proton exchange membranes: enhancing the proton conductivity, Polymer, 50, 4505, 10.1016/j.polymer.2009.07.039

Hu, 2009, Synthesis and charaterization of sulfonated polyimides derived from 2,2-bis(4-sulfophenyl)-4,4-oxydinaniline as polymer electrolyte membranes for fuel cell applications, J. Membr. Sci., 329, 146, 10.1016/j.memsci.2008.12.035

Çakir, 2008, Phosphorus-containing sulfonated polyimides for proton exchange membranes, Macromol. Chem. Phys., 209, 919, 10.1002/macp.200700510

Taeger, 2003, Ion exchange membranes derived from sulfonated polyaramides, React. Funct. Polym., 57, 77, 10.1016/j.reactfunctpolym.2003.10.001

Berber, 2013, Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole, Sci. Rep., 3, 10.1038/srep01764

Lobato, 2007, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, J. Membr. Sci., 306, 47, 10.1016/j.memsci.2007.08.028

Lin, 2012, Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells, J. Membr. Sci., 389, 399, 10.1016/j.memsci.2011.11.005

Guan, 2012, Proton conducting membranes based on poly(2,2′-imidazole-5,5′-bibenzimid-azole), Fuel Cells, 12, 124, 10.1002/fuce.201100107

Xia, 2012, Polybenzimidazoles with pendant quaternary ammonium groups as potential anion exchange membranes for fuel cells, J. Membr. Sci., 390–391, 152, 10.1016/j.memsci.2011.11.032

Li, 2009, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci., 34, 449, 10.1016/j.progpolymsci.2008.12.003

Quian, 2009, Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells, J. Polym. Sci., Part A: Polym. Chem., 47, 4064, 10.1002/pola.23467

Bai, 2004, Properties and proton conductivities of highly sulfonated polyarylenethioethersulfones for fuel cells, Polym. Prepr., 45, 60

Bai, 2006, Direct synthesis of fully aromatic sulfonated polyarylenethioether sulfones as proton-conducting polymers for fuel cells, Macromol. Rapid Commun., 27, 1271, 10.1002/marc.200600275

Shen, 2005, Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 31, 1

Bai, 2007, Structures and properties of highly sulfonated poly(arylenethioethersulfone)s as proton exchange membranes, Polymer, 48, 6598, 10.1016/j.polymer.2007.08.052

Bai, 2007, Proton exchange membranes based on sulfonated polyarylenethioethersulfone and sulfonated polybenzimidazole for fuel cell applications, J. Membr. Sci., 305, 69, 10.1016/j.memsci.2007.07.034

Lee, 2007, Synthesis and characterization of sulfonated poly(arylene thioether)s and their blends with polybenzimidazole for proton exchange membranes, J. Membr. Sci., 294, 75, 10.1016/j.memsci.2007.02.013

Ma, 2008, Sulfonated poly(arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells, J. Membr. Sci., 310, 303, 10.1016/j.memsci.2007.11.003

Bai, 2009, Fluorinated poly(arylene thioether sulfone) copolymers containing pendant sulfonic acid groups for proton exchange membranes materials, Polymer, 50, 1463, 10.1016/j.polymer.2009.01.028

Bai, 2008, Synthesis and characterization of multiblock sulfonated poly(arylene thioether sulfone) copolymers for proton exchange membranes, Macromolecules, 41, 9483, 10.1021/ma800021k

Kim, 2004, Direct methanol fuel cell performance of disulfonated poly(arylene ether benzonitrile) copolymers, J. Electrochem. Soc., 151, A2150, 10.1149/1.1819837

Gao, 2006, Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer, 47, 808, 10.1016/j.polymer.2005.12.015

Sakaguchi, 2004, Sulfonation of fluorine-containing poly(ether ketone)s and poly(ether nitrile)s for proton-conducting membranes, Polym. Prepr., 45, 20

Sankir, 2007, Proton exchange membrane for DMFC and H2/air fuel cells: synthesis and characterization of partially fluorinated disulfonated poly(arylene ether benzonitrile) copolymers, J. Membr. Sci., 299, 8, 10.1016/j.memsci.2007.04.004

Kim, 2008, High performance nitrile copolymers for polymer electrolyte membrane fuel cells, J. Membr. Sci., 321, 199, 10.1016/j.memsci.2008.04.059

Schuster, 2009, Highly sulfonated poly(phenylene sulfone): preparation and stability issues, Macromolecules, 42, 3129, 10.1021/ma900333n

de Araujo, 2009, Poly(p-phenylene sulfone)s with high ion exchange capacities: ionomers with unique microstructural and transport features, Phys. Chem. Chem. Phys., 11, 3305, 10.1039/b822069g

Titvinidze, 2012, Proton conducting phase-separated multiblock copolymers with sulfonated poly(phenylene sulfone) blocks for electrochemical applications: preparation, morphology, hydration behavior, and transport, Adv. Funct. Mater., 22, 4456, 10.1002/adfm.201200811

Vogel, 2004, On the stability of selected monomeric and polymeric aryl sulfonic acids upon heating in water. Part 1, Fuel Cells, 4, 320, 10.1002/fuce.200400035

Kim, 2008, Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): fuel cell performance, J. Power Sources, 182, 100, 10.1016/j.jpowsour.2008.03.065

Liu, 2007, Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes, Macromolecules, 40, 1934, 10.1021/ma061705+

Taeger, 2004, Sulfonated multiblock copoly(ether sulfone)s as membrane materials for fuel cell applications, Macromol. Symp., 210, 175, 10.1002/masy.200450620

Schuster, 2007, Sulfonated poly(phenylen sulfone) polymers as hydrolytically and thermooxidative stable proton conducting ionomers, Macromolecules, 40, 598, 10.1021/ma062324z

Lee, 2008, Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells, Polymer, 40, 715, 10.1016/j.polymer.2007.12.023

Schönberger, 2007, Novel Multiblock-co-Ionomers as Potential Polymer Electrolyte Membrane Materials, J. Polym. Sci., Part A: Polym. Chem., 45, 5237, 10.1002/pola.22269

Lee, 2010, Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion, J. Power Sources, 195, 1325, 10.1016/j.jpowsour.2009.08.102

Tian, 2009, Membranes from poly(aryl ether)-based ionomers containing multiblock segments of randomly distributed nanoclusters of 18 sulfonic acid groups, J. Polym. Sci., Part A: Polym. Chem., 47, 4762, 10.1002/pola.23529

Tian, 2009, Membranes from poly(aryl ether)-based ionomers containing randomly distributed nanoclusters of 6 or 12 sulfonic acid groups, Macromolecules, 42, 1153, 10.1021/ma802456m

Matsumura, 2009, Ionomers for proton exchange membrane fuel cells by sulfonation of novel dendritic multiblock copoly(ether-sulfone)s, J. Polym. Sci. A Polym. Chem., 47, 5461, 10.1002/pola.23598

Matsumura, 2008, Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups, J. Polym. Sci. A Polym. Chem., 46, 3860, 10.1002/pola.22690

Matsumura, 2008, Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: novel linear aromatic poly(sulfide-ketone)s, Macromolecules, 41, 277, 10.1021/ma071423p

Matsumura, 2008, Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: novel branched poly(ether-ketone)s, Macromolecules, 41, 281, 10.1021/ma071422x

Higashihara, 2009, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer, 50, 5341, 10.1016/j.polymer.2009.09.001

Chen, 2013, Synthesis and characterization of multiblock partially fluorinated hydrophobic poly(arylene ether sulfone)–hydrophilic disulfonated poly(arylene ether sulfone) copolymers for proton exchange membranes, J. Polym. Sci., Part A: Polym. Chem., 51, 2301, 10.1002/pola.26618

Blanco, 2002, Sulfonation of polysulfones: suitability of the sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci., 84, 2461, 10.1002/app.10536

Ghassemi, 2004, New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes, II, Polymer, 45, 5855, 10.1016/j.polymer.2004.06.009

Li, 2005, Sulfonated polyethersulfone cardo membranes for direct methanol fuel cell, J. Membr. Sci., 246, 167, 10.1016/j.memsci.2004.08.015

Hajatdoost, 1997, ATR-FTIR spectroscopic studies of the structure and permeability of sulfonated poly(ether sulfone) membranes. Part 3. Effects of sorption and desorption, and of annealing, J. Chem. Soc. Faraday Trans., 93, 1613, 10.1039/a608447h

Al-Omran, 1996, Synthesis and sulfonation of poly(phenylene ether ether sulfone)s containing methylated hydroquione residues, Polymer, 37, 1735, 10.1016/0032-3861(96)83727-X

Meier-Haack, 2007, Sulfonated poly(ether sulfone)s for fuel cells by solvent-free polymerization, Pure Appl. Chem., 79, 2083, 10.1351/pac200779112083

Meier-Haack, 2007, Side-chain sulfonated poly(arylene ether)s for fuel cell applications, Macromol. Symp., 254, 322, 10.1002/masy.200750847

Bishop, 1985, Solubility and properties of a poly(aryl ether ketone) in strong acids, Macromolecules, 18, 86, 10.1021/ma00143a014

Deb, 2007, Modification of sulfonated poly(ether ether ketone) with phenolic resin, Polym. Adv. Technol., 18, 419, 10.1002/pat.830

Kim, 1999, Sulfonated polyethersulfone by heterogeneous method and its membrane performances, J. Appl. Polym. Sci., 74, 2046, 10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3

Manea, 2002, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell application, J. Membr. Sci., 206, 443, 10.1016/S0376-7388(01)00787-6

Baradie, 1998, Thermostable ionomeric filled membrane for H2/O2 fuel cell, J. Power Sources, 74, 8, 10.1016/S0378-7753(97)02816-4

Dyck, 2002, Proton-conductive membranes of sulfonated polyphenylsulfone, J. Appl. Polym. Sci., 86, 2820, 10.1002/app.11264

Genova-Dimitrova, 2001, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, J. Membr. Sci., 185, 59, 10.1016/S0376-7388(00)00634-7

Lufrano, 2000, Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells, J. Appl. Polym. Sci., 77, 1250, 10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R

Yang, 2004, Synthesis of sulfonated polysulfon-block-PVDF copolymers: enhancement of proton conductivity in low ion exchange capacity membranes, Macromolecules, 37, 1678, 10.1021/ma035659e

Park, 2005, Annealing effect of sulfonated polysulfone ionomer membranes on proton conductivity and methanol transport, J. Membr. Sci., 247, 103, 10.1016/j.memsci.2004.09.023

Lafitte, 2002, Sulfophenylation of polysulfones for proton-conducting fuel cell membranes, Macromol. Rapid Commun., 23, 896, 10.1002/1521-3927(20021001)23:15<896::AID-MARC896>3.0.CO;2-P

Karlsson, 2004, Polysulfone ionomers for proton-conducting fuel cell membranes: sulfo-alkylated polysulfones, J. Membr. Sci., 230, 61, 10.1016/j.memsci.2003.10.033

Jannasch, 2005, Fuel cell membrane materials by chemical grafting of aromatic main-chain polymers, Fuel Cells, 5, 248, 10.1002/fuce.200400051

Every, 2005, An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes, J. Membr. Sci., 250, 183, 10.1016/j.memsci.2004.10.026

Lafitte, 2005, Phosphonation of polysulfones via lithiation and reaction with chlorophosphonic acid esters, J. Polym. Sci., Part A: Polym. Chem., 43, 273, 10.1002/pola.20487

Lafitte, 2005, Proton conducting polysulfone ionomers carrying sulfoaryloxybenzoyl side chains, Macromol. Rapid Commun., 26, 1464, 10.1002/marc.200500391

Lafitte, 2007, Polysulfone ionomers functionalized with benzoyl(difluoromethylenephosphonic acid) side chains for proton-conducting fuel-cell membranes, J. Polym. Sci., Part A: Polym. Chem., 45, 269, 10.1002/pola.21755

Lafitte, 2007, Proton-conducting aromatic polymers carrying hypersulfonated side chains for fuel cell applications, Adv. Funct. Mater., 17, 2823, 10.1002/adfm.200700107

Parvole, 2008, Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state, Macromolecules, 41, 3893, 10.1021/ma800042m

Kerres, 1998, New sulfonated engineering polymers via the metalation route. II. Sulfinated/sulfonated poly(ether sulfone) PSU Udel and its crosslinking, J. Polym. Sci., Part A: Polym. Chem., 36, 1441, 10.1002/(SICI)1099-0518(19980715)36:9<1441::AID-POLA12>3.0.CO;2-4

Kerres, 1996, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel via metalation–sulfination–oxidation, J. Polym. Sci., Part A: Polym. Chem., 34, 2421, 10.1002/(SICI)1099-0518(19960915)34:12<2421::AID-POLA17>3.0.CO;2-A

Guiver, 2000, Functionalized polysulfones: methods for chemical modification and membrane applications

Bailly, 1987, The sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): preparation and characterization, Polymer, 28, 1009, 10.1016/0032-3861(87)90178-9

Shibuya, 1992, Kinetics of PEEK sulfonation in concentrated sulfuric acid, Macromolecules, 25, 6495, 10.1021/ma00050a017

Kim, 2009, Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes, Macromolecules, 42, 957, 10.1021/ma802192y

Chikashige, 2005, Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cells, Macromolecules, 38, 7121, 10.1021/ma050856u

Chen, 2006, Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application, J. Membr. Sci., 280, 433, 10.1016/j.memsci.2006.01.052

Liu, 2006, Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s (SPFEEKK) for fuel cell applications, J. Membr. Sci., 280, 54, 10.1016/j.memsci.2006.01.004

Zhang, 2006, Novel covalently cross-linked poly(ether ether ketone) ionomer membranes, J. Power Sources, 155, 3, 10.1016/j.jpowsour.2004.12.082

Ding, 2007, Fabrication of crosslinked sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane, J. Power Sources, 170, 20, 10.1016/j.jpowsour.2007.03.068

Park, 2006, Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties, J. Membr. Sci., 285, 432, 10.1016/j.memsci.2006.09.026

Zhang, 2007, A new and facile approach for the preparation of cross-linked sulfonated poly(sulfide sulfone) membranes for fuel cell application, J. Power Sources, 170, 42, 10.1016/j.jpowsour.2007.03.065

Mikhailenko, 2006, Properties of PEMs based on cross-linked sulfinated poly(ether ether ketone), J. Membr. Sci., 285, 306, 10.1016/j.memsci.2006.08.036

Kerres, 1999, Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells, Solid State Ionics, 125, 243, 10.1016/S0167-2738(99)00181-2

Kerres, 2000, Preparation, characterization and fuel cell application of new acid–base blend membranes, J. New Mater. Electrochem. Syst., 3, 229

Kerres, 2005, Blended and cross-linked ionomer membranes for application in membrane fuel cells, Fuel Cells, 5, 230, 10.1002/fuce.200400079

Feng, 2010, Novel method for the preparation of ionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization, J. Membr. Sci., 346, 105, 10.1016/j.memsci.2009.09.026

Roy, 2009, Influence of microstructure and chemical composition on proton exchange membrane properties of sulfonated-fluorinated, hydrophilic–hydrophobic multiblock copolymers, J. Membr. Sci., 327, 118, 10.1016/j.memsci.2008.11.016

Lee, 2009, Effects of block length and solution-casting conditions on the final morphology and properties of disulfonated poly(arylene ether sulfone) multiblock copolymer films for proton exchange membranes, Polymer, 50, 6129, 10.1016/j.polymer.2009.10.023

Stamm, 1964

Soldenhoff, 2009, Recovery of uranium from phosphoric acid by ion exchange

Jyo, 1997, Preparation of phosphoric acid resins with large cation exchange capacities from macroreticular poly(glycidyl methacrylate-co-divinyl benzene) beads and their behavior in uptake of metal ions, J. Appl. Polym. Sci., 63, 1327, 10.1002/(SICI)1097-4628(19970307)63:10<1327::AID-APP12>3.0.CO;2-1

Penczek, 2012, Biphosphonate units in the main polymer chain: the first synthesis, J. Polym. Sci., Part A: Polym. Chem., 50, 3030, 10.1002/pola.26083

Alexandratos, 1996, Synthesis and ion-complexing properties of a novel polymer-supported reagent with diphosphonate ligands, Macromolecules, 29, 1021, 10.1021/ma950943u

Kita

Choi, 1999, Electrochemical properties of polyethylene membrane materials modified with sulfonic and phosphonic acid groups, Korean J. Chem. Eng., 16, 725, 10.1007/BF02698343

Kennedy, 1958, Syntheses of metal-complexing polymers. II. Phosphonamide and α-aminophosphonate polymers, J. Appl. Chem., 8, 465, 10.1002/jctb.5010080711

Yebra-Biurrun, 1992, Synthesis and characterization of a poly(aminophosphonic acid) chelating resin, Anal. Chim. Acta., 264, 53, 10.1016/0003-2670(92)85295-H

Nesterenko, 1999, Aminophosphonate-functionalized silica: a versatile chromatographic phase for high-performance chelation ion chromatography, Microchem. J., 62, 58, 10.1006/mchj.1999.1717

Alexandros, 1991, Development of bifunctional polymers for metal ion separation: ionic recognition with polymer-supported reagents, Ind. Eng. Chem. Res., 30, 772, 10.1021/ie00052a022

Karabachnik, 1953, New method for the synthesis of 1-aminoalkylphosphonic acids communication 1, Bull. Acad. Sci. USSR, 2, 769, 10.1007/BF01178856

Fields, 1952, The synthesis of esters of substituted amino phosphonic acids, J. Am. Chem. Soc., 74, 1528, 10.1021/ja01126a054

Naydemova, 2010, Recent synthesis of aminophosphonic acids as potential biological importance, Amino Acids, 38, 23, 10.1007/s00726-009-0254-7

Tayouo, 2010, New fluorinated polymers bearing pendant phosphonic acid groups. Proton conducting membranes for fuel cells, Macromolecules, 43, 5269, 10.1021/ma100703k

Parvole, 2008, Poly(arylene ether sulfone)s with phosphonic acid and bis(posphonic acid) on short alkyl side chains for proton exchange membranes, J. Mater. Chem., 18, 5547, 10.1039/b811755a

Fukuzaki, 2010, Highly phosphonated poly(N-phenylacrylamide) for proton exchange membranes, J. Polym. Sci., Part A: Polym. Chem., 49, 93, 10.1002/pola.24422

Papadimitriou, 2010, Phosphonated fully aromatic polyethers for PEMFCs applications, J. Polym. Sci., Part A: Polym. Chem., 48, 2817, 10.1002/pola.24055

Labalme, 2012, New hybrid membranes based on phosphonic acid functionalized silica particles for PEMFC, J. Polym. Sci., Part A: Polym. Chem., 50, 1308, 10.1002/pola.25895

Wagner, 2009, Vinylphosphonic acid homo- and blockcopolymers, Macromol. Chem. Phys., 210, 1903, 10.1002/macp.200900284

Allcock, 2002, Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes) as proton-conducting membranes for direct methanol fuel cells, J. Membr. Sci., 201, 17, 10.1016/S0376-7388(01)00702-5

Joseph, 2011, Phosphinic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications, J. Power Sources, 196, 7363, 10.1016/j.jpowsour.2010.08.090

Atanasov, 2011, Highly phosphonated polypentafluorostyrene, Macromolecules, 44, 6416, 10.1021/ma2011574

Shao, 2013, Poly(tetrafluorostyrenephosphonic acid)-polysulfone block copolymers and membranes, J. Polym. Sci., Part A: Polym. Chem., 51, 4657, 10.1002/pola.26887

Abu-Thabit, 2010, New highly phosphonated polysulfone membranes for PEM fuel cells, J. Membr. Sci., 360, 26, 10.1016/j.memsci.2010.04.041

Tamura, 2012, Polymer electrolyte membranes based on polystyrenes with phosphonic acid via long alkyl side chain, J. Polym. Sci., Part A: Polym. Chem., 50, 4334, 10.1002/pola.26246

Kim, 2007, Characterization of poly(styrene-b-vinylbenzylphosphonic acid) copolymer by titration and thermal analysis, Macromol. Res., 15, 587, 10.1007/BF03218835

Sannigrahi, 2013, Block selective grafting of poly(vinylphosphonic acid) from aromatic multiblock copolymers for nanostructured electrolyte membranes, Polym. Chem., 4, 4207, 10.1039/c3py00513e

Rusanov, 2008, Proton-conducting polymers and membranes carrying phosphonic acid groups, Adv. Polym. Sci., 216, 125

Park, 1999, Pervaporation separation of an aqueous organic mixture through a poly(acrylonitrile-co-vinylphosphonic acid) membrane, J. Appl. Polym. Sci., 74, 83, 10.1002/(SICI)1097-4628(19991003)74:1<83::AID-APP9>3.0.CO;2-6

Tan, 2005, Improved cell adhesion and proliferation on synthetic phosphonic acid-containing hydrogels, Biomaterials, 26, 3663, 10.1016/j.biomaterials.2004.09.053

Gemeinhart, 2006, Osteoblast-like cell attachtment to and calcification of novel phosphonate-containing polymeric substrates, J. Biomed. Mater. Res. Part A, 78A, 433, 10.1002/jbm.a.30788

Ziegler, 2009, Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization, Colloid Polym. Sci., 287, 1261, 10.1007/s00396-009-2087-z

Engel, 2004

Freedman, 1957, The preparation and properties of phosphonic acids, Chem. Rev., 57, 479, 10.1021/cr50015a003

David, 2012, Recent progress on phosphonate vinyl monomers and polymers therefore obtained by radical (co)polymerization, Polym. Chem., 3, 265, 10.1039/C1PY00276G

Zhuang, 1994, Miscibility studies of poly(styrene-co-4-vinylbenzenephosphonic acid diethyl ester) with poly(vinylphenol), Macromolecules, 27, 6398, 10.1021/ma00100a025

Langner, 2011

Phillips, 1970, Mechanical and thermal properties of phosphorylated polyethylene, J. Polym. Sci., Part B: Polym. Phys., 8, 87, 10.1002/pol.1970.110080205

Phillips, 1970, Structure and properties of polyethylene modified with phosphinic acid side groups. I. Mechanical and thermal studies, Macromolecules, 3, 767, 10.1021/ma60018a011

Phillips, 1970, Structure and properties of polyethylene modified with phosphonic acid side groups. II: dielectric properties, Macromolecules, 3, 771, 10.1021/ma60018a012

Opper, 2009, Polyethylene functionalized with precisely spaced phosphonic acid groups, Macromolecules, 42, 4407, 10.1021/ma900884f

C. Vogel, Unpublished results.

Masson, 1993, Two methods for the synthesis of (2-mercaptophenyl)phosphonic acid, Synthesis, 485, 10.1055/s-1993-25889

Trostyanskaya, 1966, Anion exchangers of the onium class of compounds, Zh. Priklad. Khim., 39, 1754

Hickner, 2013, Anion exchange membranes: current status and moving forward, J. Polym. Sci., Part B: Polym. Phys., 51, 1727, 10.1002/polb.23395

Luo, 1992, Quaternized poly(methyl methacrylate-co-butylacrylate-co-vinylbenzylchloride) membrane for alkaline fuel cells, J. Power Sources, 195, 3763

Ko, 2012, Radiation-induced synthesis of solid alkaline exchange membranes with quaternized 1,4-diazabicyclo[2,2,2] octane pendant groups for fuel cell applications, Polymer, 53, 4652, 10.1016/j.polymer.2012.08.002

Kubota, 1996, Novel anion exchange resins with thermal stability: synthesis and characteristics, Spec. Publ. R. Soc. Chem., 182, 182

Watanabe, 1997, Anion exchange resins with heat and chemical stability, UltraPure Water, 39

Irving, 1996, The development and application of type III strong base anion exchange resin (Purolite A-555), Spec. Publ. R. Soc. Chem., 239, 221

Yanagi, 2008, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), Electrochem. Soc. Trans., 16, 257

Dragan, 2004, Ion-exchange resins. III. Functionalization-morphology correlations in the synthesis of some macroporous, strong basic anion exchangers and uranium-sorption properties evaluation, J. Polym. Sci., Part A: Polym. Chem., 42, 2451, 10.1002/pola.20106

Neagu, 2010, N-methylimidazolium functionalized strongly basic anion exchangers: synthesis, chemical and thermal stability, React. Funct. Polym., 70, 88, 10.1016/j.reactfunctpolym.2009.10.009

Zeng, 2010, Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells, J. Membr. Sci., 349, 237, 10.1016/j.memsci.2009.11.051

Sata, 1996, Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature, J. Membr. Sci., 112, 161, 10.1016/0376-7388(95)00292-8

Zhou, 2011, Solvent processible, high-performance partially fluorinated copoly(arylene ether) alkaline ionomers for alkaline electrodes, J. Power Sources, 196, 7924, 10.1016/j.jpowsour.2011.05.024

Tanaka, 2011, Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications, Polym. Chem., 2, 99, 10.1039/C0PY00238K

Wang, 2009, Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications, J. Membr. Sci., 326, 4, 10.1016/j.memsci.2008.09.037

Bauer, 1990, Anion-exchange membranes with improved alkaline stability, Desalination, 79, 125, 10.1016/0011-9164(90)85002-R

Zschocke, 1985, Novel ion exchange membranes based on an aromatic polyethersulfone, J. Membr. Sci., 22, 325, 10.1016/S0376-7388(00)81290-9

Wang, 2010, Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications, Macromolecules, 43, 3890, 10.1021/ma100260a

Zhou, 2010, Crosslinked, epoxy-based anion conductive membranes for alkaline membrane fuel cells, J. Membr. Sci., 350, 286, 10.1016/j.memsci.2010.01.003

Pan, 2010, High-performance alkaline polymer electrolyte for fuel cell applications, Adv. Funct. Mater., 20, 312, 10.1002/adfm.200901314

Lu, 2008, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, PNAS, 52, 20611, 10.1073/pnas.0810041106

Hwang, 1998, Preparation of anion-exchange membrane based on block copolymers. Part 1. Amination of the chloromethylated copolymers, J. Membr. Sci., 140, 195, 10.1016/S0376-7388(97)00283-4

Lin, 2013, Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells, J. Mater. Chem. A, 1, 7262, 10.1039/c3ta10308k

Hossain, 2013, Synthesis and characterization of tetra-imidazolium hydroxides poly(fluorenylene ether sulfone) anion exchange membranes, React. Funct. Polym., 73, 1299, 10.1016/j.reactfunctpolym.2013.06.010

Ong, 2011, Anionic membrane and ionomer based poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline membrane fuel cells, J. Power Sources, 196, 8272, 10.1016/j.jpowsour.2011.06.015

Wu, 2009, Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: effect of heat treatment, J. Membr. Sci., 338, 51, 10.1016/j.memsci.2009.04.012

Rao, 2013, Imidazolium-functionalized poly(arylene ether sulfone) block copolymer as an anion exchange membrane for alkaline fuel cell, Polymer, 54, 111, 10.1016/j.polymer.2012.11.023

Katzfuß, 2013, The application of covalently cross-linked BrPPO as AEM in alkaline DMFC, J. Membr. Sci., 425–426, 131, 10.1016/j.memsci.2012.09.022

Sollogub, 2009, Formation and characterization of crosslinked membranes for alkaline fuel cells, J. Membr. Sci., 335, 37, 10.1016/j.memsci.2009.02.027

Stoica, 2007, Anionic membranes based on polyepichlorhydrin matrix for alkaline fuel cell: physical and electrochemical properties, Electrochim. Acta, 53, 1596, 10.1016/j.electacta.2007.03.034

Hradil, 1990, Reactive polymers. 61. Synthesis of strongly basic anion exchange methacrylate resins, React. Polym., 13, 43, 10.1016/0923-1137(90)90039-7

Xiong, 2008, Preparation and characterization of cross-linked quaternuzed poly(vinyl alcohol) membranes for anion exchange membrane fuel cells, J. Membr. Sci., 311, 319, 10.1016/j.memsci.2007.12.029

Qiao, 2010, Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability, Polymer, 51, 4850, 10.1016/j.polymer.2010.08.018

Fernandez-Prini, 1984, The effect of temperature on the stability of ion-exchange resins in aqueous media, J. Appl. Polym. Sci., 29, 341, 10.1002/app.1984.070290132

Yao, 2001

Malshe, 1999, Synthesis of 3-chloro-2-hydroxy propyl methacrylate and ion exchange resins therefrom, React. Funct. Polym., 39, 83, 10.1016/S1381-5148(97)00153-3

Hodgdon, 1990, High ion exchange capacity polyelectrolytes having high crosslink densities and caustic stability

Liu, 2006, Fabrication of porous polymer particles with high anion exchange capacity by amination reaction in aqueous media, Green Chem., 8, 386, 10.1039/b514262h

Cao, 2012, The synthesis and characteristic of an anion conductive polymer membrane for alkaline anion exchange fuel cell, J. Power Sources, 201, 226, 10.1016/j.jpowsour.2011.10.113

Martin, 2004, Solid alkaline fuel cell comprising ion exchange membrane

Mutsui, 1986, Novel ion-exchange membranes having fluorocarbon backbone: preparation and stability, J. Appl. Polym. Sci., 32, 4137, 10.1002/app.1986.070320327

Salerno, 2012, Anion exchange membranes derived from Nafion precursor for the alkaline fuel cel, J. Polym. Sci., Part B: Polym. Phys., 50, 552, 10.1002/polb.23033

Valade, 2009, Preparation of solid alkaline fuel cell binders based on fluorinated poly(diallyldimethylammonium chloride)s [PolyDADMAC] or poly(chlorotrifluoroethylene-co-DADMAC) copolymeers, J. Polym. Sci., Part A: Polym. Chem., 47, 2043, 10.1002/pola.23290

Wan, 2010, Anion-exchange membranes composed of quaternized-chitosan derivates for alkaline fuel cells, J. Power Sources, 195, 3785, 10.1016/j.jpowsour.2009.11.123

Clark, 2009, A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer, J. Am. Chem. Soc., 131, 12888, 10.1021/ja905242r

Zhang, 2013, Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells, J. Mater. Chem. A, 1, 2595, 10.1039/c2ta01178f

Wang, 2011, Poly(arylene ether sulfone)s ionomers with pendant quaternary ammonium groups for alkaline anion exchange membranes: preparation and stability issues, J. Membr. Sci., 368, 246, 10.1016/j.memsci.2010.11.058

Lee, 2011, Alkaline fuel cell membranes from xylylene block ionenes, J. Membr. Sci., 383, 254, 10.1016/j.memsci.2011.08.062

Arges, 2010, Anion exchange membrane fuel cells, Electrochem. Soc. Interface, 31, 10.1149/2.F03102if

Qiao, 2013, Anion conducting poly(vinyl alcohol)/poly(diallyldimethyl ammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells, J. Power Sources, 237, 1, 10.1016/j.jpowsour.2013.02.059

Dow Chemical Company: Product information Amberjet 9000OH.

Dow Chemical Company: Product information DOWEX Marathon A.

Dow Chemical Company: Product information DOWEX Marathon A2.

Wheaton, 1951, Properties of strongly basic anion exchange resins, Ind. Eng. Chem., 43, 1088, 10.1021/ie50497a027

Edson, 2012, Hydroxide based decomposition pathways of alkyltrimethylammonium cations, J. Membr. Sci., 399–400, 49, 10.1016/j.memsci.2012.01.025

Ye, 2011, Relative chemical stability of imidazolium-based alkaline anion exchange polymerized ionic liquids, Macromolecules, 44, 8494, 10.1021/ma201864u

Fujimoto, 2012, Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells, J. Membr. Sci., 423–424, 438, 10.1016/j.memsci.2012.08.045

Varcoe, 2005, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187, 10.1002/fuce.200400045

Xing, 2000, Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochem. Commun., 2, 697, 10.1016/S1388-2481(00)00107-7

Neagu, 2000, Ionic polymers VI. Chemical stability of strong base anion exchangers in aggressive media, Polym. Degrad. Stab., 70, 463, 10.1016/S0141-3910(00)00142-7

Luca, 1997, An unconventional synthesis of strongly basic anion exchangers, Spec. Publ. R. Soc. Chem., 196, 70

Tomoi, 1997, Synthesis and thermal stability of novel anion exchange resins with spacer chains, J. Appl. Polym. Sci., 64, 1161, 10.1002/(SICI)1097-4628(19970509)64:6<1161::AID-APP16>3.0.CO;2-Z

Hellwinkel, 1972, Ringschlussreaktionen von 2′-heterosubstituierten Biphenyl-2-diazonium-Salzen zu (spiro)cyclischen Tetraarylammonium-Salzen und Tribenz[b.d.f.]azepinen, Chem. Ber., 105, 880, 10.1002/cber.19721050320

Hellwinkel, 1972, Zur Frage des pentakoordinierten Stickstoffs: Reaktionen von (spiro)cyclischen Tetraarylammonium-Salzen mit Nukleophilen, Liebigs Ann. Chem., 762, 29, 10.1002/jlac.19727620105

Li, 2013, Towards high conductivity in anion-exchange membranes for alkaline fuel cells, ChemSusChem, 6, 1376, 10.1002/cssc.201300320

Kenawy, 1998, Biologically active polymers: synthesis and antimicrobial activity of modified glycidyl methacrylate polymers having a quaternary ammonium and phosphonium groups, J. Control. Release, 50, 145, 10.1016/S0168-3659(97)00126-0

Kanazawa, 1993, Novel polycationic biocides: synthesis and antibacterial activity of polymeric phosphonium salts, J. Polym. Sci., Part A: Polym. Chem., 31, 335, 10.1002/pola.1993.080310205

Bansal, 2012, Lipophilic and cationic triphenylphosphonium grafted linear polyethyleneimine polymers for efficient gene delivery to mammalian cells, J. Mater. Chem., 22, 25427, 10.1039/c2jm35243e

Ornelas-Megiatto, 2012, Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers, J. Am. Chem. Soc., 134, 1902, 10.1021/ja207366k

Noonan, 2012, Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes, J. Am. Chem. Soc., 134, 18161, 10.1021/ja307466s

Gu, 2011, Self-crosslinking for dimensionally stable and solvent resistant quaternary phosphonium based hydroxide exchange membranes, Chem. Commun., 47, 2856, 10.1039/c0cc04335d

Gu, 2009, A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells, Angew. Chem., 121, 6621, 10.1002/ange.200806299

Yan, 2012, Highly basic ionomers and membranes and anion/hydroxide exchange fuel cells comprosing the ionomers and membranes

Hemp, 2013, Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties, Polym. Chem., 4, 3582, 10.1039/c3py00365e

Chen, 2010, Chemical stability and application of a fluorophilic tetraalkylphosphonium salt in fluorous membrane anion selective electrodes, New J. Chem., 34, 1867, 10.1039/b9nj00696f