Multiscale computing in the exascale era

Journal of Computational Science - Tập 22 - Trang 15-25 - 2017
Saad Alowayyed1,2, Derek Groen3, Peter V. Coveney4, Alfons G. Hoekstra1,5
1Computational Science Lab, Institute for Informatics, University of Amsterdam, The Netherlands
2King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
3Department of Computer Science, Brunel University London, United Kingdom
4Centre for Computational Science, University College London, United Kingdom
5ITMO University, Saint Petersburg, Russia

Tài liệu tham khảo

Hoekstra, 2014, Multiscale modelling and simulation: a position paper, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130377, 10.1098/rsta.2013.0377 W.E, 2011 Sloot, 2010, Multi-scale modelling in computational biomedicine, Br. Bioinform., 11, 142, 10.1093/bib/bbp038 Fish, 2009 Engquist, 2009 Karabasov, 2014, Multiscale modelling: approaches and challenges, Philos. Trans. R. Soc. A, 372, 20130390, 10.1098/rsta.2013.0390 Coveney, 2016, Bridging the gaps at the physics–chemistry–biology interface, Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci., 374, 10.1098/rsta.2016.0335 Portegies Zwart, 2010, Simulating the universe on an intercontinental grid of supercomputers, IEEE Comput., 43, 63, 10.1109/MC.2009.419 Suter, 2015, Chemically specific multiscale modeling of clay-Polymer nanocomposites reveals intercalation dynamics, tactoid self-Assembly and emergent materials properties, Adv. Mater., 27, 966, 10.1002/adma.201403361 Silani, 2016, Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach, J. Comput. Sci., 15, 18, 10.1016/j.jocs.2015.11.007 Laurini, 2016, MoDeNa nanotools: an integrated multiscale simulation workflow to predict thermophysical properties of thermoplastic polyurethanes, J. Comput. Sci., 15, 24, 10.1016/j.jocs.2015.11.006 Bin, 2016, Multi-scale modeling and trans-level simulation from material meso-damage to structural failure of reinforced concrete frame structures under seismic loading, J. Comput. Sci., 12, 38, 10.1016/j.jocs.2015.11.003 Suter, 2011, Rule based design of clay-swelling inhibitors, Energy Environ. Sci., 4, 4572, 10.1039/c1ee01280k Anzai, 2012, Optimization of flow diverters for cerebral aneurysms, J. Comput. Sci., 3, 1, 10.1016/j.jocs.2011.12.006 Coveney, 2013, Integrative approaches to computational biomedicine, Interface Focus, 3, 737, 10.1098/rsfs.2013.0003 Garbey, 2015, A multiscale computational framework to understand vascular adaptation, J. Comput. Sci., 8, 32, 10.1016/j.jocs.2015.02.002 Itani, 2015, An automated multiscale ensemble simulation approach for vascular blood flow, J. Comput. Sci., 9, 150, 10.1016/j.jocs.2015.04.008 Kohl, 2010, The virtual physiological human: computer simulation for integrative biomedicine II, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 368, 2591, 10.1098/rsta.2010.0098 Omholt, 2016, The Human Physiome: a necessary key for the creative destruction of medicine, Interface Focus, 6, 237, 10.1098/rsfs.2016.0003 Paredes, 2015, The cardiorisk project: improvement of cardiovascular risk assessment, J. Comput. Sci., 9, 39, 10.1016/j.jocs.2015.04.025 Zasada, 2012, IMENSE: An e-infrastructure environment for patient specific multiscale data integration, modelling and clinical treatment, J. Comput Sci., 3, 314, 10.1016/j.jocs.2011.07.001 Falchetto, 2014, The European integrated tokamak modelling (ITM) effort: achievements and first physics results, Nucl. Fusion, 54, 43018, 10.1088/0029-5515/54/4/043018 Bruzzone, 2015, Perspectives of modeling & applied simulation: modeling, algorithms and simulations: advances and novel researches for problem-solving and decision-making in complex, multi-scale and multi-domain systems, J. Comput. Sci., 10, 63, 10.1016/j.jocs.2015.06.004 Groen, 2014, Survey of multiscale and multiphysics applications and communities, Comput. Sci. Eng., 16, 34, 10.1109/MCSE.2013.47 Alexandrov, 2016, Route to exascale: novel mathematical methods, scalable algorithms and computational science skills, J. Comput. Sci., 14, 1, 10.1016/j.jocs.2016.04.014 Chopard, 2014, A framework for multi-scale modelling, Philos. Trans. R. Soc. A, 372, 20130378, 10.1098/rsta.2013.0378 Borgdorff, 2013, Foundations of distributed multiscale computing: formalization, specification, and analysis, J. Parallel Distrib. Comput., 73, 465, 10.1016/j.jpdc.2012.12.011 Trefethen, 2013, Energy-aware software: challenges, opportunities and strategies, J. Comput. Sci., 4, 444, 10.1016/j.jocs.2013.01.005 Elliott, 2016, Exploiting data representation for fault tolerance, J. Comput. Sci., 14, 51, 10.1016/j.jocs.2015.12.002 Dorier, 2016, On the energy footprint of I/O management in Exascale HPC systems, Fut. Gener. Comput. Syst., 62, 17, 10.1016/j.future.2016.03.002 Ferreira, 2014, Accelerating incremental checkpointing for extreme-scale computing, Fut. Gener. Comput. Syst., 30, 66, 10.1016/j.future.2013.04.017 Shaw, 2014, Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer, 41 Bédorf, 2014, 24.77 Pflops on a gravitational tree-code to simulate the Milky Way Galaxy with 18600 GPUs, 54 Yokota, 2013, Petascale turbulence simulation using a highly parallel fast multipole method on GPUs, Comput. Phys. Commun., 184, 445, 10.1016/j.cpc.2012.09.011 Borgdorff, 2014, Performance of distributed multiscale simulations, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130407, 10.1098/rsta.2013.0407 Borgdorff, 2014, Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment, J. Comput. Sci., 5, 719, 10.1016/j.jocs.2014.04.004 Borgdorff, 2012, A distributed multiscale computation of a tightly coupled model using the multiscale modeling language, Proc. Comput. Sci., 9, 596, 10.1016/j.procs.2012.04.064 Hoekstra, 2006, Introducing complex automata for modelling multi-Scale complex systems Hoekstra, 2010, Complex automata: multi-scale modeling with coupled cellular automata, 29 Falcone, 2010, MML: towards a multiscale modeling language, Proc. Comput. Sci., 1, 819, 10.1016/j.procs.2010.04.089 Caiazzo, 2009, Asymptotic analysis of Complex Automata models for reaction-diffusion systems, Appl. Numer. Math., 59, 2023, 10.1016/j.apnum.2009.04.001 Lorenz, 2011, Heterogeneous multiscale simulations of suspension flow, Multiscale Model. Simul., 9, 1301, 10.1137/100818522 O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, et al. Designing and running turbulence transport simulations using a distributed multiscale computing approach, EPS 2013, Europhys. Conf. Abstr. 37D. (2013) P4.155. Mizeranschi, 2016, Anatomy and physiology of multiscale modeling and simulation in systems medicine, Methods Mol. Biol., 1386, 375, 10.1007/978-1-4939-3283-2_17 Mizeranschi, 2016, MultiGrain/MAPPER: A distributed multiscale computing approach to modeling and simulating gene regulation networks, Fut. Gener. Comput. Syst., 63, 1, 10.1016/j.future.2016.04.002 Borgdorff, 2013, Multiscale computing with the multiscale modeling library and runtime environment, Proc. Comput. Sci., 18, 1097, 10.1016/j.procs.2013.05.275 Groen, 2013, Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations, Interface Focus, 3, 20120087, 10.1098/rsfs.2012.0087 Hoekstra, 2016, Towards the virtual artery: a multiscale model for vascular physiology at the PCB interface, Phil. Trans. R. Soc. A, 374, 20160146, 10.1098/rsta.2016.0146 Tahir, 2015, An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting, J. R. Soc. Interface, 12, 20150358, 10.1098/rsif.2015.0358 Tahir, 2014, Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling, J. R. Soc. Interface, 11, 20140022, 10.1098/rsif.2014.0022 Amatruda, 2014, From histology and imaging data to models for in-stent restenosis, Int. J. Artif. Organs, 37, 786, 10.5301/ijao.5000336 Tahir, 2013, Modelling the effect of a functional endothelium on the development of In-Stent restenosis, PLoS One, 8, e66138, 10.1371/journal.pone.0066138 Knap, 2015, Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science, Nanotechnology, 26, 434004, 10.1088/0957-4484/26/43/434004 Knap, 2016, A computational framework for scale-bridging in multi-scale simulations, Int. J. Numer. Methods Eng., 10.1002/nme.5270 Belgacem, 2013, Distributed multiscale computations using the MAPPER framework, Proc. Comput. Sci., 18, 1106, 10.1016/j.procs.2013.05.276 Kwok, 1999, Benchmarking and comparison of the task graph scheduling algorithms, J. Parallel Distrib. Comput., 59, 381, 10.1006/jpdc.1999.1578 Evans, 2008, The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery, Phil. Trans R. Soc. A, 366, 3343, 10.1098/rsta.2008.0081 Tahir, 2011, Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design, Interface Focus, 1, 365, 10.1098/rsfs.2010.0024 Anderson, 1999 Armstrong, 1999, Toward a common component architecture for high-performance scientific computing, Eighth Int Symp. High Perform. Distrib. Comput., 10.1109/HPDC.1999.805289 The ComPat project, (2015). www.compat-project.eu. E, 2007, Heterogeneous multiscale methods: a review, Commun. Comput Phys., 2, 367 Zwart, 2014, Computational gravitational dynamics with modern numerical accelerators, ArXiv E-Prints, 1409, 5474 Mountrakis, 2015, Parallel performance of an IB-LBM suspension simulation framework, J. Comput. Sci., 9, 45, 10.1016/j.jocs.2015.04.006 E, 2003, The heterogeneous multiscale methods, Comm. Math. Sci., 1, 87, 10.4310/CMS.2003.v1.n1.a8 Lorenz, 2011 Sadiq, 2008, Automated molecular simulation based binding affinity calculator for ligand-Bound HIV-1 proteases, J. Chem. Inf. Model., 48, 1909, 10.1021/ci8000937 Wright, 2014, Computing clinically relevant binding free energies of HIV-1 protease inhibitors, J. Chem. Theory Comput., 10, 1228, 10.1021/ct4007037 Groen, 2016, FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures, Comput. Phys. Commun., 207, 375, 10.1016/j.cpc.2016.05.020 Warner, 2011 Palmer, 2005, Representing model uncertainty in weather and climate prediction, Annu. Rev. Earth Planet. Sci., 33, 163, 10.1146/annurev.earth.33.092203.122552 Martínez, 2014, Sublattice parallel replica dynamics, Phys. Rev. E, 89, 63308, 10.1103/PhysRevE.89.063308 Stevenson, 2006, Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, 10.1029/2005JD006338 Bowman, 2010, Network models for molecular kinetics and their initial applications to human health, Cell Res., 20, 622, 10.1038/cr.2010.57 Coveney, 2012, Theory, modelling and simulation in origins of life studies, Chem. Soc. Rev., 41, 5430, 10.1039/c2cs35018a Kurowski, 2013, DCworms − a tool for simulation of energy efficiency in distributed computing infrastructures, Simul. Model. Pract. Theory, 39, 135, 10.1016/j.simpat.2013.08.007 Broughton, 1999, Concurrent coupling of length scales: methodology and application, Phys. Rev. B, 60, 2391, 10.1103/PhysRevB.60.2391 Mountrakis, 2013, Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels, Interface Focus, 3, 20120089, 10.1098/rsfs.2012.0089 Ben Belgacem, 2015, A hybrid HPC/cloud distributed infrastructure: coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications, Fut. Gener. Comput. Syst., 42, 11, 10.1016/j.future.2014.08.003