Multiscale computing in the exascale era
Tài liệu tham khảo
Hoekstra, 2014, Multiscale modelling and simulation: a position paper, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130377, 10.1098/rsta.2013.0377
W.E, 2011
Sloot, 2010, Multi-scale modelling in computational biomedicine, Br. Bioinform., 11, 142, 10.1093/bib/bbp038
Fish, 2009
Engquist, 2009
Karabasov, 2014, Multiscale modelling: approaches and challenges, Philos. Trans. R. Soc. A, 372, 20130390, 10.1098/rsta.2013.0390
Coveney, 2016, Bridging the gaps at the physics–chemistry–biology interface, Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci., 374, 10.1098/rsta.2016.0335
Portegies Zwart, 2010, Simulating the universe on an intercontinental grid of supercomputers, IEEE Comput., 43, 63, 10.1109/MC.2009.419
Suter, 2015, Chemically specific multiscale modeling of clay-Polymer nanocomposites reveals intercalation dynamics, tactoid self-Assembly and emergent materials properties, Adv. Mater., 27, 966, 10.1002/adma.201403361
Silani, 2016, Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach, J. Comput. Sci., 15, 18, 10.1016/j.jocs.2015.11.007
Laurini, 2016, MoDeNa nanotools: an integrated multiscale simulation workflow to predict thermophysical properties of thermoplastic polyurethanes, J. Comput. Sci., 15, 24, 10.1016/j.jocs.2015.11.006
Bin, 2016, Multi-scale modeling and trans-level simulation from material meso-damage to structural failure of reinforced concrete frame structures under seismic loading, J. Comput. Sci., 12, 38, 10.1016/j.jocs.2015.11.003
Suter, 2011, Rule based design of clay-swelling inhibitors, Energy Environ. Sci., 4, 4572, 10.1039/c1ee01280k
Anzai, 2012, Optimization of flow diverters for cerebral aneurysms, J. Comput. Sci., 3, 1, 10.1016/j.jocs.2011.12.006
Coveney, 2013, Integrative approaches to computational biomedicine, Interface Focus, 3, 737, 10.1098/rsfs.2013.0003
Garbey, 2015, A multiscale computational framework to understand vascular adaptation, J. Comput. Sci., 8, 32, 10.1016/j.jocs.2015.02.002
Itani, 2015, An automated multiscale ensemble simulation approach for vascular blood flow, J. Comput. Sci., 9, 150, 10.1016/j.jocs.2015.04.008
Kohl, 2010, The virtual physiological human: computer simulation for integrative biomedicine II, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 368, 2591, 10.1098/rsta.2010.0098
Omholt, 2016, The Human Physiome: a necessary key for the creative destruction of medicine, Interface Focus, 6, 237, 10.1098/rsfs.2016.0003
Paredes, 2015, The cardiorisk project: improvement of cardiovascular risk assessment, J. Comput. Sci., 9, 39, 10.1016/j.jocs.2015.04.025
Zasada, 2012, IMENSE: An e-infrastructure environment for patient specific multiscale data integration, modelling and clinical treatment, J. Comput Sci., 3, 314, 10.1016/j.jocs.2011.07.001
Falchetto, 2014, The European integrated tokamak modelling (ITM) effort: achievements and first physics results, Nucl. Fusion, 54, 43018, 10.1088/0029-5515/54/4/043018
Bruzzone, 2015, Perspectives of modeling & applied simulation: modeling, algorithms and simulations: advances and novel researches for problem-solving and decision-making in complex, multi-scale and multi-domain systems, J. Comput. Sci., 10, 63, 10.1016/j.jocs.2015.06.004
Groen, 2014, Survey of multiscale and multiphysics applications and communities, Comput. Sci. Eng., 16, 34, 10.1109/MCSE.2013.47
Alexandrov, 2016, Route to exascale: novel mathematical methods, scalable algorithms and computational science skills, J. Comput. Sci., 14, 1, 10.1016/j.jocs.2016.04.014
Chopard, 2014, A framework for multi-scale modelling, Philos. Trans. R. Soc. A, 372, 20130378, 10.1098/rsta.2013.0378
Borgdorff, 2013, Foundations of distributed multiscale computing: formalization, specification, and analysis, J. Parallel Distrib. Comput., 73, 465, 10.1016/j.jpdc.2012.12.011
Trefethen, 2013, Energy-aware software: challenges, opportunities and strategies, J. Comput. Sci., 4, 444, 10.1016/j.jocs.2013.01.005
Elliott, 2016, Exploiting data representation for fault tolerance, J. Comput. Sci., 14, 51, 10.1016/j.jocs.2015.12.002
Dorier, 2016, On the energy footprint of I/O management in Exascale HPC systems, Fut. Gener. Comput. Syst., 62, 17, 10.1016/j.future.2016.03.002
Ferreira, 2014, Accelerating incremental checkpointing for extreme-scale computing, Fut. Gener. Comput. Syst., 30, 66, 10.1016/j.future.2013.04.017
Shaw, 2014, Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer, 41
Bédorf, 2014, 24.77 Pflops on a gravitational tree-code to simulate the Milky Way Galaxy with 18600 GPUs, 54
Yokota, 2013, Petascale turbulence simulation using a highly parallel fast multipole method on GPUs, Comput. Phys. Commun., 184, 445, 10.1016/j.cpc.2012.09.011
Borgdorff, 2014, Performance of distributed multiscale simulations, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 372, 20130407, 10.1098/rsta.2013.0407
Borgdorff, 2014, Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment, J. Comput. Sci., 5, 719, 10.1016/j.jocs.2014.04.004
Borgdorff, 2012, A distributed multiscale computation of a tightly coupled model using the multiscale modeling language, Proc. Comput. Sci., 9, 596, 10.1016/j.procs.2012.04.064
Hoekstra, 2006, Introducing complex automata for modelling multi-Scale complex systems
Hoekstra, 2010, Complex automata: multi-scale modeling with coupled cellular automata, 29
Falcone, 2010, MML: towards a multiscale modeling language, Proc. Comput. Sci., 1, 819, 10.1016/j.procs.2010.04.089
Caiazzo, 2009, Asymptotic analysis of Complex Automata models for reaction-diffusion systems, Appl. Numer. Math., 59, 2023, 10.1016/j.apnum.2009.04.001
Lorenz, 2011, Heterogeneous multiscale simulations of suspension flow, Multiscale Model. Simul., 9, 1301, 10.1137/100818522
O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, et al. Designing and running turbulence transport simulations using a distributed multiscale computing approach, EPS 2013, Europhys. Conf. Abstr. 37D. (2013) P4.155.
Mizeranschi, 2016, Anatomy and physiology of multiscale modeling and simulation in systems medicine, Methods Mol. Biol., 1386, 375, 10.1007/978-1-4939-3283-2_17
Mizeranschi, 2016, MultiGrain/MAPPER: A distributed multiscale computing approach to modeling and simulating gene regulation networks, Fut. Gener. Comput. Syst., 63, 1, 10.1016/j.future.2016.04.002
Borgdorff, 2013, Multiscale computing with the multiscale modeling library and runtime environment, Proc. Comput. Sci., 18, 1097, 10.1016/j.procs.2013.05.275
Groen, 2013, Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations, Interface Focus, 3, 20120087, 10.1098/rsfs.2012.0087
Hoekstra, 2016, Towards the virtual artery: a multiscale model for vascular physiology at the PCB interface, Phil. Trans. R. Soc. A, 374, 20160146, 10.1098/rsta.2016.0146
Tahir, 2015, An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting, J. R. Soc. Interface, 12, 20150358, 10.1098/rsif.2015.0358
Tahir, 2014, Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling, J. R. Soc. Interface, 11, 20140022, 10.1098/rsif.2014.0022
Amatruda, 2014, From histology and imaging data to models for in-stent restenosis, Int. J. Artif. Organs, 37, 786, 10.5301/ijao.5000336
Tahir, 2013, Modelling the effect of a functional endothelium on the development of In-Stent restenosis, PLoS One, 8, e66138, 10.1371/journal.pone.0066138
Knap, 2015, Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science, Nanotechnology, 26, 434004, 10.1088/0957-4484/26/43/434004
Knap, 2016, A computational framework for scale-bridging in multi-scale simulations, Int. J. Numer. Methods Eng., 10.1002/nme.5270
Belgacem, 2013, Distributed multiscale computations using the MAPPER framework, Proc. Comput. Sci., 18, 1106, 10.1016/j.procs.2013.05.276
Kwok, 1999, Benchmarking and comparison of the task graph scheduling algorithms, J. Parallel Distrib. Comput., 59, 381, 10.1006/jpdc.1999.1578
Evans, 2008, The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery, Phil. Trans R. Soc. A, 366, 3343, 10.1098/rsta.2008.0081
Tahir, 2011, Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design, Interface Focus, 1, 365, 10.1098/rsfs.2010.0024
Anderson, 1999
Armstrong, 1999, Toward a common component architecture for high-performance scientific computing, Eighth Int Symp. High Perform. Distrib. Comput., 10.1109/HPDC.1999.805289
The ComPat project, (2015). www.compat-project.eu.
E, 2007, Heterogeneous multiscale methods: a review, Commun. Comput Phys., 2, 367
Zwart, 2014, Computational gravitational dynamics with modern numerical accelerators, ArXiv E-Prints, 1409, 5474
Mountrakis, 2015, Parallel performance of an IB-LBM suspension simulation framework, J. Comput. Sci., 9, 45, 10.1016/j.jocs.2015.04.006
E, 2003, The heterogeneous multiscale methods, Comm. Math. Sci., 1, 87, 10.4310/CMS.2003.v1.n1.a8
Lorenz, 2011
Sadiq, 2008, Automated molecular simulation based binding affinity calculator for ligand-Bound HIV-1 proteases, J. Chem. Inf. Model., 48, 1909, 10.1021/ci8000937
Wright, 2014, Computing clinically relevant binding free energies of HIV-1 protease inhibitors, J. Chem. Theory Comput., 10, 1228, 10.1021/ct4007037
Groen, 2016, FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures, Comput. Phys. Commun., 207, 375, 10.1016/j.cpc.2016.05.020
Warner, 2011
Palmer, 2005, Representing model uncertainty in weather and climate prediction, Annu. Rev. Earth Planet. Sci., 33, 163, 10.1146/annurev.earth.33.092203.122552
Martínez, 2014, Sublattice parallel replica dynamics, Phys. Rev. E, 89, 63308, 10.1103/PhysRevE.89.063308
Stevenson, 2006, Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, 10.1029/2005JD006338
Bowman, 2010, Network models for molecular kinetics and their initial applications to human health, Cell Res., 20, 622, 10.1038/cr.2010.57
Coveney, 2012, Theory, modelling and simulation in origins of life studies, Chem. Soc. Rev., 41, 5430, 10.1039/c2cs35018a
Kurowski, 2013, DCworms − a tool for simulation of energy efficiency in distributed computing infrastructures, Simul. Model. Pract. Theory, 39, 135, 10.1016/j.simpat.2013.08.007
Broughton, 1999, Concurrent coupling of length scales: methodology and application, Phys. Rev. B, 60, 2391, 10.1103/PhysRevB.60.2391
Mountrakis, 2013, Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels, Interface Focus, 3, 20120089, 10.1098/rsfs.2012.0089
Ben Belgacem, 2015, A hybrid HPC/cloud distributed infrastructure: coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications, Fut. Gener. Comput. Syst., 42, 11, 10.1016/j.future.2014.08.003