Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride
Tài liệu tham khảo
Raes, 2016, Determination of the spin-lifetime anisotropy in graphene using oblique spin precession, Nat. Commun., 7, 10.1038/ncomms11444
Kamalakar, 2015, Long distance spin communication in chemical vapour deposited graphene, Nat. Commun., 6, 6766, 10.1038/ncomms7766
Barone, 2008, Magnetic boron nitride nanoribbons with tunable electronic properties, Nano Lett., 8, 2210, 10.1021/nl080745j
Dankert, 2017, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun., 8, 16093, 10.1038/ncomms16093
Avsar, 2015, Air stable transport in graphene contacted, fully encapsulated ultra thin black phosphorus-based field-effect transistors, Acs Nano, 9, 4138, 10.1021/acsnano.5b00289
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996
Castro Netom, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109
Novoselov, 2007, Electronic properties of graphene, Vacuum, 244, 4106
Dresselhaus, 2010, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Condens. Matter Phys., 1, 89
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235
Katsnelson, 2006, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384
Beenakker, 2008, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys., 80, 1337, 10.1103/RevModPhys.80.1337
Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300
Geim, 2007, Graphene: exploring carbon flatland, Phys. Today, 60, 35, 10.1063/1.2774096
Xiao, 2007, Valley-contrasting physics in graphene: magnetic moment and topological transport, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.236809
Zhai, 2010, Magnetic barrier on strained graphene: a possible valley filter, Phys. Rev. B Condens. Matter, 82, 3175, 10.1103/PhysRevB.82.115442
Gunlycke, 2011, Graphene valley filter using a line defect, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.136806
Wu, 2011, Valley-dependent Brewster angles and Goos-Hänchen effect in strained graphene, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.176802
Li, 2014, Spontaneous layer-pseudospin domain walls in bilayer graphene, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.116803
Rycerz, 2007, Valley filter and valley valve in graphene, Nat. Phys., 3, 172, 10.1038/nphys547
Ashcroft, 1976, 878
Jeckelmann, 2001, The quantum Hall effect as an electrical resistance standard, Rep. Prog. Phys., 64, 1603, 10.1088/0034-4885/64/12/201
Geim, 2007, Room temperature quantum Hall effect in graphene, Science, 315, 1379, 10.1126/science.1137201
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Du, 2009, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature, 462, 192, 10.1038/nature08522
Sun, 2010, CT-invariant quantum spin Hall effect in ferromagnetic graphene, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.066805
Shen, 2006, Quantum spin Hall effect, Phys. Rev. Lett., 96
Kane, 2005, Quantum spin Hall effect in graphene, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.226801
Ohishi, 2007, Spin injection into a graphene thin film at room temperature, Physics, 29, 310
Han, 2010, Tunneling spin injection into single layer graphene, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.167202
Abanin, 2011, Giant nonlocality near the Dirac point in graphene, Science, 332, 328, 10.1126/science.1199595
Tombros, 2007, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 448, 571, 10.1038/nature06037
Fruchart, 2012, Magnetostatics of synthetic ferrimagnet elements, J. Magn. Magn. Mater., 324, 365, 10.1016/j.jmmm.2011.07.020
Dankert, 2014, Spin transport and precession in graphene measured by nonlocal and three-terminal methods, Appl. Phys. Lett., 104, 10.1063/1.4876060
Kamalakar, 2015, Long distance spin communication in chemical vapour deposited graphene, Nat. Commun., 6, 6766, 10.1038/ncomms7766
Han, 2014, Graphene spintronics, Nat. Nanotechnol., 9, 324, 10.1038/nnano.2014.214
Han, 2011, Spin relaxation in single-layer and bilayer graphene, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.047207
Józsa, 2009, Linear scaling between momentum and spin scattering in graphene, Phys. Rev. B, 80, 10.1103/PhysRevB.80.241403
Volmer, 2013, Role of MgO barriers for spin and charge transport in Co/MgO/graphene non-local spin-valve devices, Phys. Rev. B, 88, 10.1103/PhysRevB.88.161405
Zomer, 2012, Long distance spin transport in high mobility graphene on hexagonal boron nitride, Phys. Rev. B, 86, 10.1103/PhysRevB.86.161416
Pi, 2010, Manipulation of spin transport in graphene by surface chemical doping, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.187201
Han, 2012, Spin relaxation in single-layer graphene with tunable mobility, Nano Lett., 12, 3443, 10.1021/nl301567n
Raes, 2016, Determination of the spin-lifetime anisotropy in graphene using oblique spin precession, Nat. Commun., 7, 10.1038/ncomms11444
Garnica, 2013, Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene, Nat. Phys., 9, 368, 10.1038/nphys2610
Wu, 2008, Magnetic behavior of graphene absorbed with N, O, and F atoms: a first-principles study, Appl. Phys. Lett., 93, 10.1063/1.2973209
Sevinçli, 2008, Electronic and magnetic properties of 3 d transition-metal atom adsorbed graphene and graphene nanoribbons, Phys. Rev. B, 77, 10.1103/PhysRevB.77.195434
Zhou, 2009, Ferromagnetism in semihydrogenated graphene sheet, Nano Lett., 9, 3867, 10.1021/nl9020733
Xie, 2011, Room temperature ferromagnetism in partially hydrogenated epitaxial graphene, Appl. Phys. Lett., 98, 10.1063/1.3589970
Elias, 2009, Control of Graphene's properties by reversible hydrogenation: evidence for graphane, Science, 323, 610, 10.1126/science.1167130
Yi, 2015, Stability of hydrogenated graphene: a first-principles study, Rsc Adv., 5, 20617, 10.1039/C5RA00004A
Brihuega, 2016, Atomic-scale control of graphene magnetism by using hydrogen atoms, Science, 352, 437, 10.1126/science.aad8038
Wang, 2009, Room-temperature ferromagnetism of graphene, Nano Lett., 9, 220, 10.1021/nl802810g
Santos, 2010, Magnetism of substitutional Co impurities in graphene: realization of single π vacancies, Phys. Rev. B, 81, 10.1103/PhysRevB.81.125433
Krasheninnikov, 2009, Embedding transition-metal atoms in graphene: structure, bonding, and magnetism, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.126807
Santos, 2010, First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties, New J. Phys., 12, 10.1088/1367-2630/12/5/053012
Huang, 2011, Strain control of magnetism in graphene decorated by transition-metal atoms, Phys. Rev. B, 84, 10.1103/PhysRevB.84.075415
Zhou, 2009, Electronic and magnetic properties of graphene absorbed with S atom: a first-principles study, J. Appl. Phys., 105, 10.1063/1.3130401
Dai, 2010, Absorption of Pt clusters and the induced magnetic properties of graphene, J. Phys. Condens. Matter An Inst. Phys. J., 22
Valencia, 2010, Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis, J. Phys. Chem. C., 114, 14141, 10.1021/jp103445v
Chan, 2008, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B, 77, 10.1103/PhysRevB.77.235430
Cao, 2010, Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures, Phys. Rev. B, 81, 10.1103/PhysRevB.81.205424
Wu, 2010, Patterned hydrogenation of graphene: magnetic quantum dot array, J. Phys. Chem. C., 114, 139, 10.1021/jp9086128
Son, 2007, Half-metallic graphene nanoribbons, Nature, 444, 347, 10.1038/nature05180
Lee, 2005, Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge-localized states, Phys. Rev. B, 72, 10.1103/PhysRevB.72.174431
Magda, 2014, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature, 514, 608, 10.1038/nature13831
Fujita, 1996, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn., 65, 1920, 10.1143/JPSJ.65.1920
Pisani, 2007, Electronic structure and magnetic properties of graphitic ribbons, Phys. Rev. B, 75, 10.1103/PhysRevB.75.064418
Bligh, 1930
Wu, 2010, Exploration of half metallicity in edge-modified graphene nanoribbons, J. Phys. Chem. C, 114, 3937, 10.1021/jp100027w
Wu, 2013, Unusual magnetic properties of functionalized graphene nanoribbons, J. Phys. Chem. Lett., 4, 2482, 10.1021/jz401216j
Phillips, 2016, Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces, Appl. Phys. Lett., 108, 10.1063/1.4942778
Wang, 2008, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.206803
Dankert, 2017, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun., 8, 16093, 10.1038/ncomms16093
Candini, 2011, Graphene spintronic devices with molecular nanomagnets, Nano Lett., 11, 2634, 10.1021/nl2006142
Azevedo, 2007, A theoretical investigation of defects in a boron nitride monolayer, Nanotechnology, 18, 10.1088/0957-4484/18/49/495707
Ekuma, 2017, First-principles-based method for electron localization: application to monolayer hexagonal boron nitride, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.106404
Topsakal, 2009, First-principles study of two- and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B, 79, 10.1103/PhysRevB.79.115442
Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5
Yu, 2003, Ab initio study of phase transformations in boron nitride, Phys. Rev. B, 67, 14108, 10.1103/PhysRevB.67.014108
Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B Condens. Matter, 44, 7787, 10.1103/PhysRevB.44.7787
Park, 2008, Energy gaps and stark effect in boron nitride nanoribbons, Nano Lett., 8, 2200, 10.1021/nl080695i
Chen, 2008, Novel boron nitride hollow nanoribbons, Acs Nano, 2, 2183, 10.1021/nn8004922
Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102
Han, 2008, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl. Phys. Lett., 93, 10.1063/1.3041639
Ouyang, 2013, Strain engineering of magnetic states of vacancy-decorated hexagonal boron nitride, Appl. Phys. Lett., 103, 10.1063/1.4819266
Du, 2009, Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in Boron−Nitride nanostructures, J. Am. Chem. Soc., 131, 17354, 10.1021/ja9071942
Si, 2007, Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations, Phys. Rev. B, 75, 10.1103/PhysRevB.75.193409
Machadocharry, 2012, Tunable magnetic states in hexagonal boron nitride sheets, Appl. Phys. Lett., 101
Yang, 2010, Magnetism in boron nitride monolayer: adatom and vacancy defect, Surf. Sci., 604, 1603, 10.1016/j.susc.2010.06.001
Wu, 2006, Possible graphitic-boron-nitride-based metal-free molecular magnets from first principles study, J. Phys. Condens. Matter, 18, 569, 10.1088/0953-8984/18/2/015
Song, 2014, Tuning the electronic and magnetic properties in zigzag boron nitride nanoribbons with carbon dopants, Comput. Mater. Sci., 81, 551, 10.1016/j.commatsci.2013.09.014
Julien, 2006, Magnetic properties of lithium intercalation compounds, Ionics, 12, 21, 10.1007/s11581-006-0007-5
Zhou, 2010, Novel electronic and magnetic properties of BN sheet decorated with hydrogen and fluorine, Phys. Rev. B, 81, 10.1103/PhysRevB.81.085442
Radhakrishnan, 2017, Fluorinated h-BN as a magnetic semiconductor, Sci. Adv., 3, e1700842, 10.1126/sciadv.1700842
Zheng, 2008, Half metallicity along the edge of zigzag boron nitride nanoribbons, Phys. Rev. B, 78, 10.1103/PhysRevB.78.205415
Wu, 2011, Inorganic nanoribbons with unpassivated zigzag edges: half metallicity and edge reconstruction, Nano Res., 4, 233, 10.1007/s12274-010-0074-9
Joshi, 2013, Substrate-induced changes in the magnetic and electronic properties of hexagonal boron nitride, Phys. Rev. B, 87, 10.1103/PhysRevB.87.235440
Wu, 2010, Charge-injection induced magnetism and half metallicity in single-layer hexagonal group III/V (BN, BP, AlN, AlP) systems, Appl. Phys. Lett., 97, 10.1063/1.3484957
Piquemalbanci, 2016, Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers, Appl. Phys. Lett., 108
Andre, 2015, Tunnel magnetoresistance with atomically thin two- dimensional hexagonal boron nitride barriers, Nano Res., 8, 1357, 10.1007/s12274-014-0627-4
Yazyev, 2012, Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride, Phys. Rev. B, 80, 10.1103/PhysRevB.80.035408
Karpan, 2011, Ni(111) | graphene | h -BN junctions as ideal spin injectors, Phys. Rev. B, 84, 10.1103/PhysRevB.84.153406
Fu, 2014, Large-scale fabrication of BN tunnel barriers for graphene spintronics, J. Appl. Phys., 116, 10.1063/1.4893578
Li, 2017, Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators, Acs Nano, 11, 6382, 10.1021/acsnano.7b02756
Wu, 2014, Tunable Exciton Funnel Using Moiré Superlattice in Twisted van der Waals Bilayer, Nano Lett., 14, 5350, 10.1021/nl502414t
Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76
Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Xue, 2011, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nat. Mater., 10, 282, 10.1038/nmat2968
Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b
Liu, 2011, Direct growth of graphene/hexagonal boron nitride stacked layers, Nano Lett., 11, 2032, 10.1021/nl200464j
Tang, 2012, Nucleation and growth of single crystal graphene on hexagonal boron nitride, Carbon, 50, 329, 10.1016/j.carbon.2011.07.062
Zhang, 2011, Band gap engineering in graphene and hexagonal BN antidot lattices: a first principles study, Appl. Phys. Lett., 98, 3209, 10.1063/1.3536517
Moon, 2014, Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B., 90, 155406, 10.1103/PhysRevB.90.155406
Wang, 2016, Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., 12, 1111, 10.1038/nphys3856
Dean, 2013, Hofstadter/'s butterfly and the fractal quantum Hall effect in moire superlattices, Nature, 497, 598, 10.1038/nature12186
Zhong, 2011, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Phys. Rev. B, 83, 10.1103/PhysRevB.83.193403
Fan, 2011, Tunable electronic structures of graphene/boron nitride heterobilayers, Appl. Phys. Lett., 98, 10.1063/1.3556640
Sanjose, 2014, Electronic structure of spontaneously strained graphene on hexagonal Boron Nitride, Phys. Rev. B, 90
Hunt, 2013, Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science, 340, 1427, 10.1126/science.1237240
Zhou, 2015, Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, 92, 10.1103/PhysRevB.92.155438
Slotman, 2014, Phonons and electron-phonon coupling in graphene-h-BN heterostructures, Ann. Der Phys., 526, 381, 10.1002/andp.201400155
Argentero, 2017, Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360
Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461
Argentero, 2017, Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360
Stewart, 2010, Energy gap tuning in graphene on hexagonal boron nitride bilayer system, Phys. Rev. B Condens. Matter, 81, 155433, 10.1103/PhysRevB.81.155433
Balu, 2012, Effect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers, Appl. Phys. Lett., 100, 10.1063/1.3679174
Kan, 2012, Why the band gap of graphene is tunable on hexagonal boron nitride, J. Phys. Chem. C, 116, 3142, 10.1021/jp2106988
Brugger, 2009, Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001), Phys. Rev. B, 79, 10.1103/PhysRevB.79.045407
Bjelkevig, 2010, Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene, J. Phys. Condens. Matter An Inst. Phys. J., 22
Tang, 2013, Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition, Sci. Rep., 3, 2666, 10.1038/srep02666
Yang, 2013, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12, 792, 10.1038/nmat3695
Song, 2016, Seed-assisted growth of single-crystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition, Nano Lett., 16, 6109, 10.1021/acs.nanolett.6b02279
Tang, 2015, Silane-catalyzed fast growth of large single-crystalline graphene on hexagonal boron nitride, Nat. Commun., 6, 6499, 10.1038/ncomms7499
Meng, 2017, Aligned growth of millimeter-size hexagonal boron nitride single-crystal domains on epitaxial nickel thin film, Small, 13, 10.1002/smll.201604179
Hüser, 2013, Quasiparticle GW calculations for solids, molecules, and two-dimensional materials, Phys. Rev. B, 87, 10.1103/PhysRevB.87.235132
Oshima, 2000, Hetero-epitaxial-double-atomic-layer system of monolayer graphene/monolayer h-BN on Ni(111), Solid State Commun., 116, 37, 10.1016/S0038-1098(00)00268-4
Okada, 2001, Magnetic ordering in hexagonally bonded sheets with first-row elements, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.146803
Jin, 2003, Itinerant ferromagnetism in heterostructured C/BN nanotubes, Phys. Rev. B Condens. Matter, 67
Ramasubramaniam, 2011, Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride, Phys. Rev. B Condens. Matter, 84, 10.1103/PhysRevB.84.075405
Berseneva, 2011, Mechanisms of postsynthesis doping of boron nitride nanostructures with carbon from first-principles simulations, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.035501
Ding, 2011, Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition, Carbon, 49, 2522, 10.1016/j.carbon.2011.02.022
Wang, 2015, Topological winding number change and broken inversion symmetry in a Hofstadter's butterfly, Nano Lett., 15, 6395, 10.1021/acs.nanolett.5b01568
Wang, 2015, Evidence for a fractional fractal quantum Hall effect in graphene superlattices, Science, 350, 1231, 10.1126/science.aad2102
Dean, 2010, Multicomponent fractional quantum Hall effect in graphene, Nat. Phys., 7, 693, 10.1038/nphys2007
Neumann, 2015, Low B field magneto-phonon resonances in single-layer and bilayer graphene, Nano Lett., 15, 1547, 10.1021/nl5038825
Krishna, 2017, High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices, Science, 357, 181, 10.1126/science.aal3357
Gopinadhan, 2015, Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures, Nat. Commun., 6, 8337, 10.1038/ncomms9337
Katsnelson, 2006, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384
Wang, 2008, Gate-variable optical transitions in graphene, Science, 320, 206, 10.1126/science.1152793
Li, 2008, Dirac charge dynamics in graphene by infrared spectroscopy, Nat. Phys., 4, 532, 10.1038/nphys989
Min, 2007, Pseudospin magnetism in graphene, Phys. Rev. B, 77, 10.1103/PhysRevB.77.041407
Jung, 2012, Lattice theory of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Hall states, Phys. Rev. B Condens. Matter, 83, 10.1103/PhysRevB.83.115408
San-Jose, 2009, Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.247204
Park, 2008, New generation of massless Dirac fermions in graphene under external periodic potentials, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.126804
Lui, 2011, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys., 7, 944, 10.1038/nphys2102
Shi, 2014, Gate-dependent pseudospin mixing in graphene/boron nitride moire superlattices, Nat. Phys., 10, 743, 10.1038/nphys3075
Lehtinen, 2004, Irradiation-induced magnetism in graphite: a density functional study, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.187202
Fernándezrossier, 2007, Magnetism in graphene nanoislands, Phys. Rev. Lett., 99
Ding, 2011, Anomalous paramagnetism in graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 10.1103/PhysRevB.84.174417
Ando, 2007, Magnetic oscillation of optical phonon in graphene, J. Phys. Soc. Jpn., 76
Cong, 2015, Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene, Phys. Rev. B, 91, 10.1103/PhysRevB.91.235403
Goerbig, 2007, Filling-factor-dependent magnetophonon resonance in graphene, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.087402
Qiu, 2013, Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy, Phys. Rev. B., 88, 10.1103/PhysRevB.88.165407
Berciaud, 2014, Probing electronic excitations in mono- to pentalayer graphene by micro magneto-Raman spectroscopy, Nano Lett., 14, 4548, 10.1021/nl501578m
Faugeras, 2010, Effect of a magnetic field on the two-phonon Raman scattering in graphene, Phys. Rev. B Condens. Matter, 81, 10.1103/PhysRevB.81.155436
Kahn, 2014, Photoinduced doping in heterostructures of graphene and boron nitride, Nat. Nanotechnol., 9, 348, 10.1038/nnano.2014.60
Neumann, 2015, Low B field magneto-phonon resonances in single-layer and bilayer graphene, Nano Lett., 15, 1547, 10.1021/nl5038825
Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b
Britnell, 2012, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett., 12, 1707, 10.1021/nl3002205
Yamaguchi, 2013, Electrical spin injection into graphene through monolayer hexagonal boron nitride, Appl. Phys. Express, 6, 10.7567/APEX.6.073001
Kamalakar, 2014, Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride, Sci. Rep., 4, 6146, 10.1038/srep06146
Wen, 2016, Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature, Phys. Rev. Appl., 5, 10.1103/PhysRevApplied.5.044003
Maassen, 2012, Contact induced spin relaxation in Hanle spin precession measurements, Phys. Rev. B Condens. Matter, 86, 10.1103/PhysRevB.86.235408
Wu, 2014, Efficient spin injection into graphene through a tunnel barrier: overcoming the spin conductance mismatch, Phys. Rev. Appl., 2, 10.1103/PhysRevApplied.2.044008
Lazić, 2016, Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures, Phys. Rev. B, 93, 10.1103/PhysRevB.93.241401
Gurram, 2017, Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures, Nat. Commun., 8, 248, 10.1038/s41467-017-00317-w
Guimarães, 2014, Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.086602
Zomer, 2012, Long distance spin transport in high mobility graphene on hexagonal boron nitride, Phys. Rev. B Condens. Matter, 86, 10.1103/PhysRevB.86.161416
Ingla-Aynés, 2015, 24 − μm spin relaxation length in boron nitride encapsulated bilayer graphene, Phys. Rev. B, 92, 10.1103/PhysRevB.92.201410
Kamalakar, 2016, Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures, Sci. Rep., 6, 10.1038/srep21168
Ochoa, 2012, Elliot-Yafet mechanism in graphene, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.206808
Kochan, 2014, Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.116602
Gurram, 2016, Spin transport in fully hexagonal boron nitride encapsulated graphene, 93
Ochoa, 2012, Elliot-Yafet mechanism in graphene, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.206808
Kochan, 2014, Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.116602
Guimarães, 2012, Spin transport in high-quality suspended graphene devices, Nano Lett., 12, 3512, 10.1021/nl301050a
Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358
Drögeler, 2014, Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature, Nano Lett., 14, 6050, 10.1021/nl501278c
Xu, 2016, Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers, Appl. Phys. Lett., 109
Drögeler, 2016, Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices, Nano Lett., 16, 3533, 10.1021/acs.nanolett.6b00497
Kamalakar, 2014, Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures, Appl. Phys. Lett., 105, 10.1063/1.4902814
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Koenig, 2014, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett., 104, 10.1063/1.4868132
Xia, 2014, Rediscovering BlackPhosphorusas an anisotropic layered material for optoelectronics and electronics. Nat, Commun, 5, 4458
Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Buscema, 2014, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett., 14, 3347, 10.1021/nl5008085
Chen, 2013, Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts, Nano Lett., 13, 3106, 10.1021/nl4010157
English, 2014, Improving contact resistance in MoS2 field effect transistors, 193
Late, 2012, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano, 6, 5635, 10.1021/nn301572c
Avsar, 2015, Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors, Acs Nano, 9, 4138, 10.1021/acsnano.5b00289
Zwanziger, 1990, Berry's phase, Annu. Rev. Phys. Chem., 41, 601, 10.1146/annurev.pc.41.100190.003125
Xiao, 2010, Berry phase effect oelectronic properties, Rev. Mod. Phys., 82, 1959, 10.1103/RevModPhys.82.1959
V, 2016, Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures, Nano Lett., 16, 1620, 10.1021/acs.nanolett.5b04441
Ghahari, 2017, An on/off Berry phase switch in circular graphene resonators, Science, 356, 845, 10.1126/science.aal0212
Schwierz, 2010, Graphene transistors, Nat. Nanotechnol., 5, 487, 10.1038/nnano.2010.89
Han, 2011, High-frequency graphene voltage amplifier, Nano Lett., 11, 3690, 10.1021/nl2016637
Lin, 2011, Wafer-scale graphene integrated circuit, Science, 332, 1294, 10.1126/science.1204428
Britnell, 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461
Britnell, 2012, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett., 12, 1707, 10.1021/nl3002205
Britnell, 2013, Resonant tunnelling and negative differential conductance in graphene transistors, Nat. Commun., 4, 1794, 10.1038/ncomms2817
Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358
Kang, 2016, Effects of electrode layer band structure on the performance of multilayer graphene–hBN–Graphene interlayer tunnel field effect transistors, Nano Lett., 16, 4975, 10.1021/acs.nanolett.6b01646
Karpan, 2011, Ni(111) | graphene | h -BN junctions as ideal spin injectors, Phys. Rev. B., 84, 153406, 10.1103/PhysRevB.84.153406
Wang, 2017, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Mater. Today Phys., 2, 6, 10.1016/j.mtphys.2017.07.001
Wang, 2017, Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials, Nanophotonics, 6, 943, 10.1515/nanoph-2017-0015
Wang, 2017, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, Rsc Adv., 7, 16801, 10.1039/C7RA00260B