Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride

Materials Today Physics - Tập 3 - Trang 93-117 - 2017
Jingang Wang1,2,3, Xuefeng Xu1, Xijiao Mu4, Fengcai Ma2, Mengtao Sun1,2,5
1Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, PR China
2Department of Physics, Liaoning University, Shenyang 110036, PR China
3College of Science, Liaoning Shihua University, Fushun, 113001, PR China
4Department of Electronic Information School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, PR China
5Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China

Tài liệu tham khảo

Raes, 2016, Determination of the spin-lifetime anisotropy in graphene using oblique spin precession, Nat. Commun., 7, 10.1038/ncomms11444 Kamalakar, 2015, Long distance spin communication in chemical vapour deposited graphene, Nat. Commun., 6, 6766, 10.1038/ncomms7766 Barone, 2008, Magnetic boron nitride nanoribbons with tunable electronic properties, Nano Lett., 8, 2210, 10.1021/nl080745j Dankert, 2017, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun., 8, 16093, 10.1038/ncomms16093 Avsar, 2015, Air stable transport in graphene contacted, fully encapsulated ultra thin black phosphorus-based field-effect transistors, Acs Nano, 9, 4138, 10.1021/acsnano.5b00289 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996 Castro Netom, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Novoselov, 2007, Electronic properties of graphene, Vacuum, 244, 4106 Dresselhaus, 2010, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Condens. Matter Phys., 1, 89 Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233 Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235 Katsnelson, 2006, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384 Beenakker, 2008, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys., 80, 1337, 10.1103/RevModPhys.80.1337 Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300 Geim, 2007, Graphene: exploring carbon flatland, Phys. Today, 60, 35, 10.1063/1.2774096 Xiao, 2007, Valley-contrasting physics in graphene: magnetic moment and topological transport, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.236809 Zhai, 2010, Magnetic barrier on strained graphene: a possible valley filter, Phys. Rev. B Condens. Matter, 82, 3175, 10.1103/PhysRevB.82.115442 Gunlycke, 2011, Graphene valley filter using a line defect, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.136806 Wu, 2011, Valley-dependent Brewster angles and Goos-Hänchen effect in strained graphene, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.176802 Li, 2014, Spontaneous layer-pseudospin domain walls in bilayer graphene, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.116803 Rycerz, 2007, Valley filter and valley valve in graphene, Nat. Phys., 3, 172, 10.1038/nphys547 Ashcroft, 1976, 878 Jeckelmann, 2001, The quantum Hall effect as an electrical resistance standard, Rep. Prog. Phys., 64, 1603, 10.1088/0034-4885/64/12/201 Geim, 2007, Room temperature quantum Hall effect in graphene, Science, 315, 1379, 10.1126/science.1137201 Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233 Du, 2009, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature, 462, 192, 10.1038/nature08522 Sun, 2010, CT-invariant quantum spin Hall effect in ferromagnetic graphene, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.066805 Shen, 2006, Quantum spin Hall effect, Phys. Rev. Lett., 96 Kane, 2005, Quantum spin Hall effect in graphene, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.226801 Ohishi, 2007, Spin injection into a graphene thin film at room temperature, Physics, 29, 310 Han, 2010, Tunneling spin injection into single layer graphene, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.167202 Abanin, 2011, Giant nonlocality near the Dirac point in graphene, Science, 332, 328, 10.1126/science.1199595 Tombros, 2007, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 448, 571, 10.1038/nature06037 Fruchart, 2012, Magnetostatics of synthetic ferrimagnet elements, J. Magn. Magn. Mater., 324, 365, 10.1016/j.jmmm.2011.07.020 Dankert, 2014, Spin transport and precession in graphene measured by nonlocal and three-terminal methods, Appl. Phys. Lett., 104, 10.1063/1.4876060 Kamalakar, 2015, Long distance spin communication in chemical vapour deposited graphene, Nat. Commun., 6, 6766, 10.1038/ncomms7766 Han, 2014, Graphene spintronics, Nat. Nanotechnol., 9, 324, 10.1038/nnano.2014.214 Han, 2011, Spin relaxation in single-layer and bilayer graphene, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.047207 Józsa, 2009, Linear scaling between momentum and spin scattering in graphene, Phys. Rev. B, 80, 10.1103/PhysRevB.80.241403 Volmer, 2013, Role of MgO barriers for spin and charge transport in Co/MgO/graphene non-local spin-valve devices, Phys. Rev. B, 88, 10.1103/PhysRevB.88.161405 Zomer, 2012, Long distance spin transport in high mobility graphene on hexagonal boron nitride, Phys. Rev. B, 86, 10.1103/PhysRevB.86.161416 Pi, 2010, Manipulation of spin transport in graphene by surface chemical doping, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.187201 Han, 2012, Spin relaxation in single-layer graphene with tunable mobility, Nano Lett., 12, 3443, 10.1021/nl301567n Raes, 2016, Determination of the spin-lifetime anisotropy in graphene using oblique spin precession, Nat. Commun., 7, 10.1038/ncomms11444 Garnica, 2013, Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene, Nat. Phys., 9, 368, 10.1038/nphys2610 Wu, 2008, Magnetic behavior of graphene absorbed with N, O, and F atoms: a first-principles study, Appl. Phys. Lett., 93, 10.1063/1.2973209 Sevinçli, 2008, Electronic and magnetic properties of 3 d transition-metal atom adsorbed graphene and graphene nanoribbons, Phys. Rev. B, 77, 10.1103/PhysRevB.77.195434 Zhou, 2009, Ferromagnetism in semihydrogenated graphene sheet, Nano Lett., 9, 3867, 10.1021/nl9020733 Xie, 2011, Room temperature ferromagnetism in partially hydrogenated epitaxial graphene, Appl. Phys. Lett., 98, 10.1063/1.3589970 Elias, 2009, Control of Graphene's properties by reversible hydrogenation: evidence for graphane, Science, 323, 610, 10.1126/science.1167130 Yi, 2015, Stability of hydrogenated graphene: a first-principles study, Rsc Adv., 5, 20617, 10.1039/C5RA00004A Brihuega, 2016, Atomic-scale control of graphene magnetism by using hydrogen atoms, Science, 352, 437, 10.1126/science.aad8038 Wang, 2009, Room-temperature ferromagnetism of graphene, Nano Lett., 9, 220, 10.1021/nl802810g Santos, 2010, Magnetism of substitutional Co impurities in graphene: realization of single π vacancies, Phys. Rev. B, 81, 10.1103/PhysRevB.81.125433 Krasheninnikov, 2009, Embedding transition-metal atoms in graphene: structure, bonding, and magnetism, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.126807 Santos, 2010, First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties, New J. Phys., 12, 10.1088/1367-2630/12/5/053012 Huang, 2011, Strain control of magnetism in graphene decorated by transition-metal atoms, Phys. Rev. B, 84, 10.1103/PhysRevB.84.075415 Zhou, 2009, Electronic and magnetic properties of graphene absorbed with S atom: a first-principles study, J. Appl. Phys., 105, 10.1063/1.3130401 Dai, 2010, Absorption of Pt clusters and the induced magnetic properties of graphene, J. Phys. Condens. Matter An Inst. Phys. J., 22 Valencia, 2010, Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis, J. Phys. Chem. C., 114, 14141, 10.1021/jp103445v Chan, 2008, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B, 77, 10.1103/PhysRevB.77.235430 Cao, 2010, Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures, Phys. Rev. B, 81, 10.1103/PhysRevB.81.205424 Wu, 2010, Patterned hydrogenation of graphene: magnetic quantum dot array, J. Phys. Chem. C., 114, 139, 10.1021/jp9086128 Son, 2007, Half-metallic graphene nanoribbons, Nature, 444, 347, 10.1038/nature05180 Lee, 2005, Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge-localized states, Phys. Rev. B, 72, 10.1103/PhysRevB.72.174431 Magda, 2014, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature, 514, 608, 10.1038/nature13831 Fujita, 1996, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn., 65, 1920, 10.1143/JPSJ.65.1920 Pisani, 2007, Electronic structure and magnetic properties of graphitic ribbons, Phys. Rev. B, 75, 10.1103/PhysRevB.75.064418 Bligh, 1930 Wu, 2010, Exploration of half metallicity in edge-modified graphene nanoribbons, J. Phys. Chem. C, 114, 3937, 10.1021/jp100027w Wu, 2013, Unusual magnetic properties of functionalized graphene nanoribbons, J. Phys. Chem. Lett., 4, 2482, 10.1021/jz401216j Phillips, 2016, Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces, Appl. Phys. Lett., 108, 10.1063/1.4942778 Wang, 2008, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.206803 Dankert, 2017, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun., 8, 16093, 10.1038/ncomms16093 Candini, 2011, Graphene spintronic devices with molecular nanomagnets, Nano Lett., 11, 2634, 10.1021/nl2006142 Azevedo, 2007, A theoretical investigation of defects in a boron nitride monolayer, Nanotechnology, 18, 10.1088/0957-4484/18/49/495707 Ekuma, 2017, First-principles-based method for electron localization: application to monolayer hexagonal boron nitride, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.106404 Topsakal, 2009, First-principles study of two- and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B, 79, 10.1103/PhysRevB.79.115442 Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5 Yu, 2003, Ab initio study of phase transformations in boron nitride, Phys. Rev. B, 67, 14108, 10.1103/PhysRevB.67.014108 Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B Condens. Matter, 44, 7787, 10.1103/PhysRevB.44.7787 Park, 2008, Energy gaps and stark effect in boron nitride nanoribbons, Nano Lett., 8, 2200, 10.1021/nl080695i Chen, 2008, Novel boron nitride hollow nanoribbons, Acs Nano, 2, 2183, 10.1021/nn8004922 Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102 Han, 2008, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl. Phys. Lett., 93, 10.1063/1.3041639 Ouyang, 2013, Strain engineering of magnetic states of vacancy-decorated hexagonal boron nitride, Appl. Phys. Lett., 103, 10.1063/1.4819266 Du, 2009, Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in Boron−Nitride nanostructures, J. Am. Chem. Soc., 131, 17354, 10.1021/ja9071942 Si, 2007, Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations, Phys. Rev. B, 75, 10.1103/PhysRevB.75.193409 Machadocharry, 2012, Tunable magnetic states in hexagonal boron nitride sheets, Appl. Phys. Lett., 101 Yang, 2010, Magnetism in boron nitride monolayer: adatom and vacancy defect, Surf. Sci., 604, 1603, 10.1016/j.susc.2010.06.001 Wu, 2006, Possible graphitic-boron-nitride-based metal-free molecular magnets from first principles study, J. Phys. Condens. Matter, 18, 569, 10.1088/0953-8984/18/2/015 Song, 2014, Tuning the electronic and magnetic properties in zigzag boron nitride nanoribbons with carbon dopants, Comput. Mater. Sci., 81, 551, 10.1016/j.commatsci.2013.09.014 Julien, 2006, Magnetic properties of lithium intercalation compounds, Ionics, 12, 21, 10.1007/s11581-006-0007-5 Zhou, 2010, Novel electronic and magnetic properties of BN sheet decorated with hydrogen and fluorine, Phys. Rev. B, 81, 10.1103/PhysRevB.81.085442 Radhakrishnan, 2017, Fluorinated h-BN as a magnetic semiconductor, Sci. Adv., 3, e1700842, 10.1126/sciadv.1700842 Zheng, 2008, Half metallicity along the edge of zigzag boron nitride nanoribbons, Phys. Rev. B, 78, 10.1103/PhysRevB.78.205415 Wu, 2011, Inorganic nanoribbons with unpassivated zigzag edges: half metallicity and edge reconstruction, Nano Res., 4, 233, 10.1007/s12274-010-0074-9 Joshi, 2013, Substrate-induced changes in the magnetic and electronic properties of hexagonal boron nitride, Phys. Rev. B, 87, 10.1103/PhysRevB.87.235440 Wu, 2010, Charge-injection induced magnetism and half metallicity in single-layer hexagonal group III/V (BN, BP, AlN, AlP) systems, Appl. Phys. Lett., 97, 10.1063/1.3484957 Piquemalbanci, 2016, Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers, Appl. Phys. Lett., 108 Andre, 2015, Tunnel magnetoresistance with atomically thin two- dimensional hexagonal boron nitride barriers, Nano Res., 8, 1357, 10.1007/s12274-014-0627-4 Yazyev, 2012, Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride, Phys. Rev. B, 80, 10.1103/PhysRevB.80.035408 Karpan, 2011, Ni(111) | graphene | h -BN junctions as ideal spin injectors, Phys. Rev. B, 84, 10.1103/PhysRevB.84.153406 Fu, 2014, Large-scale fabrication of BN tunnel barriers for graphene spintronics, J. Appl. Phys., 116, 10.1063/1.4893578 Li, 2017, Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators, Acs Nano, 11, 6382, 10.1021/acsnano.7b02756 Wu, 2014, Tunable Exciton Funnel Using Moiré Superlattice in Twisted van der Waals Bilayer, Nano Lett., 14, 5350, 10.1021/nl502414t Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76 Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172 Xue, 2011, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nat. Mater., 10, 282, 10.1038/nmat2968 Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b Liu, 2011, Direct growth of graphene/hexagonal boron nitride stacked layers, Nano Lett., 11, 2032, 10.1021/nl200464j Tang, 2012, Nucleation and growth of single crystal graphene on hexagonal boron nitride, Carbon, 50, 329, 10.1016/j.carbon.2011.07.062 Zhang, 2011, Band gap engineering in graphene and hexagonal BN antidot lattices: a first principles study, Appl. Phys. Lett., 98, 3209, 10.1063/1.3536517 Moon, 2014, Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B., 90, 155406, 10.1103/PhysRevB.90.155406 Wang, 2016, Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., 12, 1111, 10.1038/nphys3856 Dean, 2013, Hofstadter/'s butterfly and the fractal quantum Hall effect in moire superlattices, Nature, 497, 598, 10.1038/nature12186 Zhong, 2011, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Phys. Rev. B, 83, 10.1103/PhysRevB.83.193403 Fan, 2011, Tunable electronic structures of graphene/boron nitride heterobilayers, Appl. Phys. Lett., 98, 10.1063/1.3556640 Sanjose, 2014, Electronic structure of spontaneously strained graphene on hexagonal Boron Nitride, Phys. Rev. B, 90 Hunt, 2013, Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science, 340, 1427, 10.1126/science.1237240 Zhou, 2015, Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, 92, 10.1103/PhysRevB.92.155438 Slotman, 2014, Phonons and electron-phonon coupling in graphene-h-BN heterostructures, Ann. Der Phys., 526, 381, 10.1002/andp.201400155 Argentero, 2017, Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360 Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461 Argentero, 2017, Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360 Stewart, 2010, Energy gap tuning in graphene on hexagonal boron nitride bilayer system, Phys. Rev. B Condens. Matter, 81, 155433, 10.1103/PhysRevB.81.155433 Balu, 2012, Effect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers, Appl. Phys. Lett., 100, 10.1063/1.3679174 Kan, 2012, Why the band gap of graphene is tunable on hexagonal boron nitride, J. Phys. Chem. C, 116, 3142, 10.1021/jp2106988 Brugger, 2009, Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001), Phys. Rev. B, 79, 10.1103/PhysRevB.79.045407 Bjelkevig, 2010, Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene, J. Phys. Condens. Matter An Inst. Phys. J., 22 Tang, 2013, Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition, Sci. Rep., 3, 2666, 10.1038/srep02666 Yang, 2013, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12, 792, 10.1038/nmat3695 Song, 2016, Seed-assisted growth of single-crystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition, Nano Lett., 16, 6109, 10.1021/acs.nanolett.6b02279 Tang, 2015, Silane-catalyzed fast growth of large single-crystalline graphene on hexagonal boron nitride, Nat. Commun., 6, 6499, 10.1038/ncomms7499 Meng, 2017, Aligned growth of millimeter-size hexagonal boron nitride single-crystal domains on epitaxial nickel thin film, Small, 13, 10.1002/smll.201604179 Hüser, 2013, Quasiparticle GW calculations for solids, molecules, and two-dimensional materials, Phys. Rev. B, 87, 10.1103/PhysRevB.87.235132 Oshima, 2000, Hetero-epitaxial-double-atomic-layer system of monolayer graphene/monolayer h-BN on Ni(111), Solid State Commun., 116, 37, 10.1016/S0038-1098(00)00268-4 Okada, 2001, Magnetic ordering in hexagonally bonded sheets with first-row elements, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.146803 Jin, 2003, Itinerant ferromagnetism in heterostructured C/BN nanotubes, Phys. Rev. B Condens. Matter, 67 Ramasubramaniam, 2011, Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride, Phys. Rev. B Condens. Matter, 84, 10.1103/PhysRevB.84.075405 Berseneva, 2011, Mechanisms of postsynthesis doping of boron nitride nanostructures with carbon from first-principles simulations, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.035501 Ding, 2011, Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition, Carbon, 49, 2522, 10.1016/j.carbon.2011.02.022 Wang, 2015, Topological winding number change and broken inversion symmetry in a Hofstadter's butterfly, Nano Lett., 15, 6395, 10.1021/acs.nanolett.5b01568 Wang, 2015, Evidence for a fractional fractal quantum Hall effect in graphene superlattices, Science, 350, 1231, 10.1126/science.aad2102 Dean, 2010, Multicomponent fractional quantum Hall effect in graphene, Nat. Phys., 7, 693, 10.1038/nphys2007 Neumann, 2015, Low B field magneto-phonon resonances in single-layer and bilayer graphene, Nano Lett., 15, 1547, 10.1021/nl5038825 Krishna, 2017, High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices, Science, 357, 181, 10.1126/science.aal3357 Gopinadhan, 2015, Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures, Nat. Commun., 6, 8337, 10.1038/ncomms9337 Katsnelson, 2006, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384 Wang, 2008, Gate-variable optical transitions in graphene, Science, 320, 206, 10.1126/science.1152793 Li, 2008, Dirac charge dynamics in graphene by infrared spectroscopy, Nat. Phys., 4, 532, 10.1038/nphys989 Min, 2007, Pseudospin magnetism in graphene, Phys. Rev. B, 77, 10.1103/PhysRevB.77.041407 Jung, 2012, Lattice theory of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Hall states, Phys. Rev. B Condens. Matter, 83, 10.1103/PhysRevB.83.115408 San-Jose, 2009, Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.247204 Park, 2008, New generation of massless Dirac fermions in graphene under external periodic potentials, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.126804 Lui, 2011, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys., 7, 944, 10.1038/nphys2102 Shi, 2014, Gate-dependent pseudospin mixing in graphene/boron nitride moire superlattices, Nat. Phys., 10, 743, 10.1038/nphys3075 Lehtinen, 2004, Irradiation-induced magnetism in graphite: a density functional study, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.187202 Fernándezrossier, 2007, Magnetism in graphene nanoislands, Phys. Rev. Lett., 99 Ding, 2011, Anomalous paramagnetism in graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 10.1103/PhysRevB.84.174417 Ando, 2007, Magnetic oscillation of optical phonon in graphene, J. Phys. Soc. Jpn., 76 Cong, 2015, Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene, Phys. Rev. B, 91, 10.1103/PhysRevB.91.235403 Goerbig, 2007, Filling-factor-dependent magnetophonon resonance in graphene, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.087402 Qiu, 2013, Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy, Phys. Rev. B., 88, 10.1103/PhysRevB.88.165407 Berciaud, 2014, Probing electronic excitations in mono- to pentalayer graphene by micro magneto-Raman spectroscopy, Nano Lett., 14, 4548, 10.1021/nl501578m Faugeras, 2010, Effect of a magnetic field on the two-phonon Raman scattering in graphene, Phys. Rev. B Condens. Matter, 81, 10.1103/PhysRevB.81.155436 Kahn, 2014, Photoinduced doping in heterostructures of graphene and boron nitride, Nat. Nanotechnol., 9, 348, 10.1038/nnano.2014.60 Neumann, 2015, Low B field magneto-phonon resonances in single-layer and bilayer graphene, Nano Lett., 15, 1547, 10.1021/nl5038825 Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b Britnell, 2012, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett., 12, 1707, 10.1021/nl3002205 Yamaguchi, 2013, Electrical spin injection into graphene through monolayer hexagonal boron nitride, Appl. Phys. Express, 6, 10.7567/APEX.6.073001 Kamalakar, 2014, Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride, Sci. Rep., 4, 6146, 10.1038/srep06146 Wen, 2016, Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature, Phys. Rev. Appl., 5, 10.1103/PhysRevApplied.5.044003 Maassen, 2012, Contact induced spin relaxation in Hanle spin precession measurements, Phys. Rev. B Condens. Matter, 86, 10.1103/PhysRevB.86.235408 Wu, 2014, Efficient spin injection into graphene through a tunnel barrier: overcoming the spin conductance mismatch, Phys. Rev. Appl., 2, 10.1103/PhysRevApplied.2.044008 Lazić, 2016, Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures, Phys. Rev. B, 93, 10.1103/PhysRevB.93.241401 Gurram, 2017, Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures, Nat. Commun., 8, 248, 10.1038/s41467-017-00317-w Guimarães, 2014, Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.086602 Zomer, 2012, Long distance spin transport in high mobility graphene on hexagonal boron nitride, Phys. Rev. B Condens. Matter, 86, 10.1103/PhysRevB.86.161416 Ingla-Aynés, 2015, 24 − μm spin relaxation length in boron nitride encapsulated bilayer graphene, Phys. Rev. B, 92, 10.1103/PhysRevB.92.201410 Kamalakar, 2016, Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures, Sci. Rep., 6, 10.1038/srep21168 Ochoa, 2012, Elliot-Yafet mechanism in graphene, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.206808 Kochan, 2014, Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.116602 Gurram, 2016, Spin transport in fully hexagonal boron nitride encapsulated graphene, 93 Ochoa, 2012, Elliot-Yafet mechanism in graphene, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.206808 Kochan, 2014, Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.116602 Guimarães, 2012, Spin transport in high-quality suspended graphene devices, Nano Lett., 12, 3512, 10.1021/nl301050a Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358 Drögeler, 2014, Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature, Nano Lett., 14, 6050, 10.1021/nl501278c Xu, 2016, Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers, Appl. Phys. Lett., 109 Drögeler, 2016, Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices, Nano Lett., 16, 3533, 10.1021/acs.nanolett.6b00497 Kamalakar, 2014, Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures, Appl. Phys. Lett., 105, 10.1063/1.4902814 Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35 Koenig, 2014, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett., 104, 10.1063/1.4868132 Xia, 2014, Rediscovering BlackPhosphorusas an anisotropic layered material for optoelectronics and electronics. Nat, Commun, 5, 4458 Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z Buscema, 2014, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett., 14, 3347, 10.1021/nl5008085 Chen, 2013, Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts, Nano Lett., 13, 3106, 10.1021/nl4010157 English, 2014, Improving contact resistance in MoS2 field effect transistors, 193 Late, 2012, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano, 6, 5635, 10.1021/nn301572c Avsar, 2015, Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors, Acs Nano, 9, 4138, 10.1021/acsnano.5b00289 Zwanziger, 1990, Berry's phase, Annu. Rev. Phys. Chem., 41, 601, 10.1146/annurev.pc.41.100190.003125 Xiao, 2010, Berry phase effect oelectronic properties, Rev. Mod. Phys., 82, 1959, 10.1103/RevModPhys.82.1959 V, 2016, Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures, Nano Lett., 16, 1620, 10.1021/acs.nanolett.5b04441 Ghahari, 2017, An on/off Berry phase switch in circular graphene resonators, Science, 356, 845, 10.1126/science.aal0212 Schwierz, 2010, Graphene transistors, Nat. Nanotechnol., 5, 487, 10.1038/nnano.2010.89 Han, 2011, High-frequency graphene voltage amplifier, Nano Lett., 11, 3690, 10.1021/nl2016637 Lin, 2011, Wafer-scale graphene integrated circuit, Science, 332, 1294, 10.1126/science.1204428 Britnell, 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461 Britnell, 2012, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett., 12, 1707, 10.1021/nl3002205 Britnell, 2013, Resonant tunnelling and negative differential conductance in graphene transistors, Nat. Commun., 4, 1794, 10.1038/ncomms2817 Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358 Kang, 2016, Effects of electrode layer band structure on the performance of multilayer graphene–hBN–Graphene interlayer tunnel field effect transistors, Nano Lett., 16, 4975, 10.1021/acs.nanolett.6b01646 Karpan, 2011, Ni(111) | graphene | h -BN junctions as ideal spin injectors, Phys. Rev. B., 84, 153406, 10.1103/PhysRevB.84.153406 Wang, 2017, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Mater. Today Phys., 2, 6, 10.1016/j.mtphys.2017.07.001 Wang, 2017, Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials, Nanophotonics, 6, 943, 10.1515/nanoph-2017-0015 Wang, 2017, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, Rsc Adv., 7, 16801, 10.1039/C7RA00260B