Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant

Cell - Tập 184 - Trang 3426-3437.e8 - 2021
Xianding Deng1,2, Miguel A. Garcia-Knight3, Mir M. Khalid4,5, Venice Servellita1,2, Candace Wang1,2, Mary Kate Morris6, Alicia Sotomayor-González1,2, Dustin R. Glasner1,2, Kevin R. Reyes1,2, Amelia S. Gliwa1,2, Nikitha P. Reddy1,2, Claudia Sanchez San Martin1,2, Scot Federman7, Jing Cheng4, Joanna Balcerek1, Jordan Taylor1, Jessica A. Streithorst1, Steve Miller1, Bharath Sreekumar4,5, Pei-Yi Chen4,5
1Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
2UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA 94158, USA
3Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143 USA
4Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
5Gladstone Institute of Virology, San Francisco, CA 94158, USA
6California Department of Public Health, Richmond, CA 94804, USA
7Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA 94158, USA

Tài liệu tham khảo

Avanzato, 2020, Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer, Cell, 183, 1901, 10.1016/j.cell.2020.10.049 Bedford, 2020 Bedford, 2021 Bouckaert, 2019, BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis, PLoS Comput. Biol., 15, e1006650, 10.1371/journal.pcbi.1006650 Bushnell, 2021 Buss, 2021, Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic, Science, 371, 288, 10.1126/science.abe9728 Case, 2020, Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2, Cell Host Microbe, 28, 475, 10.1016/j.chom.2020.06.021 2021 2021 Challen, 2021, Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study, BMJ, 372, n579, 10.1136/bmj.n579 Chand, 2020 Chen, 2020, Mutations Strengthened SARS-CoV-2 Infectivity, J. Mol. Biol., 432, 5212, 10.1016/j.jmb.2020.07.009 Chiu, 2021 Choi, 2020, Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host, N. Engl. J. Med., 383, 2291, 10.1056/NEJMc2031364 Cole, 2021 2020, An integrated national scale SARS-CoV-2 genomic surveillance network, Lancet Microbe., 1, e99, 10.1016/S2666-5247(20)30054-9 Crawford, 2020, Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays, Viruses, 12, E513, 10.3390/v12050513 Davies, 2021, Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England, Science, 372, eabg3055, 10.1126/science.abg3055 Davies, 2021, Increased hazard of death in community-tested cases of SARS-CoV-2 Variant of Concern 202012/01, medRxiv Davies, 2021, Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7, Nature, 10.1038/s41586-021-03426-1 Day, 2020, On the evolutionary epidemiology of SARS-CoV-2, Curr. Biol., 30, R849, 10.1016/j.cub.2020.06.031 Deng, 2020, Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California, Science, 369, 582, 10.1126/science.abb9263 Drew, 2020, The importance of cycle threshold values in interpreting molecular tests for SARS-CoV-2, Diagn. Microbiol. Infect. Dis., 98, 115130, 10.1016/j.diagmicrobio.2020.115130 Drummond, 2012, Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 29, 1969, 10.1093/molbev/mss075 Elbe, 2017, Data, disease and diplomacy: GISAID’s innovative contribution to global health, Glob. Chall., 1, 33, 10.1002/gch2.1018 Faria, 2021, Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil, medRxiv Fontanet, 2021, SARS-CoV-2 variants and ending the COVID-19 pandemic, Lancet, 397, 952, 10.1016/S0140-6736(21)00370-6 Gangavarapu, 2020 Garcia-Beltran, 2021, Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell, 10.1016/j.cell.2021.03.013 Hoffmann, 2020, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, 181, 271, 10.1016/j.cell.2020.02.052 Hou, 2020, SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science, 370, 1464, 10.1126/science.abe8499 Hu, 2021, Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies, Cell. Mol. Immunol., 18, 1061, 10.1038/s41423-021-00648-1 Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772, 10.1093/molbev/mst010 Kearse, 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28, 1647, 10.1093/bioinformatics/bts199 Kemp, 2021, SARS-CoV-2 evolution during treatment of chronic infection, Nature, 592, 277, 10.1038/s41586-021-03291-y Khanna, 2020, Binding of SARS-CoV-2 spike protein to ACE2 is disabled by thiol-based drugs; evidence from in vitro SARS-CoV-2 infection studies, bioRxiv Klimstra, 2020, SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients, J. Gen. Virol., 101, 1156, 10.1099/jgv.0.001481 Korber, 2020, Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus, Cell, 182, 812, 10.1016/j.cell.2020.06.043 Lan, 2020, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 581, 215, 10.1038/s41586-020-2180-5 Lau, 2021, Neutralizing antibody titres in SARS-CoV-2 infections, Nat. Commun., 12, 63, 10.1038/s41467-020-20247-4 Leung, 2021, Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020, Euro Surveill., 26, 2002106, 10.2807/1560-7917.ES.2020.26.1.2002106 Liu, 2020, Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization, bioRxiv Liu, 2021, Neutralizing Activity of BNT162b2-Elicited Serum - Preliminary Report, N. Engl. J. Med., 10.1056/NEJMc2102017 Msomi, 2020, A genomics network established to respond rapidly to public health threats in South Africa, Lancet Microbe, 1, e229, 10.1016/S2666-5247(20)30116-6 Plante, 2021, Spike mutation D614G alters SARS-CoV-2 fitness, Nature, 592, 116, 10.1038/s41586-020-2895-3 Quick, 2017, Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples, Nat. Protoc., 12, 1261, 10.1038/nprot.2017.066 Rai, 2021, Estimates of serial interval for COVID-19: A systematic review and meta-analysis, Clin. Epidemiol. Glob. Health, 9, 157, 10.1016/j.cegh.2020.08.007 Rambaut, 2021 Rambaut, 2018, Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7, Syst. Biol., 67, 901, 10.1093/sysbio/syy032 Rambaut, 2020, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology, Nat. Microbiol., 5, 1403, 10.1038/s41564-020-0770-5 Rambaut, 2020 Sabino, 2021, Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence, Lancet, 397, 452, 10.1016/S0140-6736(21)00183-5 Sachs, 2019, Long-term expanding human airway organoids for disease modeling, EMBO J., 38, e100300, 10.15252/embj.2018100300 Samuel, 2020, Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men, Cell Stem Cell, 27, 876, 10.1016/j.stem.2020.11.009 Seow, 2020, Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans, Nat. Microbiol., 5, 1598, 10.1038/s41564-020-00813-8 Shu, 2017, GISAID: Global initiative on sharing all influenza data - from vision to reality, Euro Surveill., 22, 30494, 10.2807/1560-7917.ES.2017.22.13.30494 Tegally, 2020, Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa, medRxiv Teng, 2021, Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity, Brief. Bioinform., 22, 1239, 10.1093/bib/bbaa233 Volz, 2020, Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data, medRxiv Wang, 2005, Assays for the assessment of neutralizing antibody activities against Severe Acute Respiratory Syndrome (SARS) associated coronavirus (SCV), J. Immunol. Methods, 301, 21, 10.1016/j.jim.2005.03.008 Wang, 2021, mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants, Nature, 592, 616, 10.1038/s41586-021-03324-6 Washington, 2021, Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States, medRxiv Wibmer, 2021, SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma, Nat. Med., 27, 622, 10.1038/s41591-021-01285-x Wise, 2021, Covid-19: The E484K mutation and the risks it poses, BMJ, 372, n359, 10.1136/bmj.n359 Wu, 2021, Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine, N. Engl. J. Med., 10.1056/NEJMc2102179 Wu, 2021, mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants, bioRxiv Xie, 2021, Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera, Nat. Med., 27, 620, 10.1038/s41591-021-01270-4 Zhang, 2021, Emergence of a Novel SARS-CoV-2 Variant in Southern California, JAMA, 325, 1324, 10.1001/jama.2021.1612 Zhou, 2021, SARS-CoV-2 spike D614G change enhances replication and transmission, Nature, 592, 122, 10.1038/s41586-021-03361-1 Zhu, 2020, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med., 382, 727, 10.1056/NEJMoa2001017