Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant
Tài liệu tham khảo
Avanzato, 2020, Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer, Cell, 183, 1901, 10.1016/j.cell.2020.10.049
Bedford, 2020
Bedford, 2021
Bouckaert, 2019, BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis, PLoS Comput. Biol., 15, e1006650, 10.1371/journal.pcbi.1006650
Bushnell, 2021
Buss, 2021, Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic, Science, 371, 288, 10.1126/science.abe9728
Case, 2020, Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2, Cell Host Microbe, 28, 475, 10.1016/j.chom.2020.06.021
2021
2021
Challen, 2021, Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study, BMJ, 372, n579, 10.1136/bmj.n579
Chand, 2020
Chen, 2020, Mutations Strengthened SARS-CoV-2 Infectivity, J. Mol. Biol., 432, 5212, 10.1016/j.jmb.2020.07.009
Chiu, 2021
Choi, 2020, Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host, N. Engl. J. Med., 383, 2291, 10.1056/NEJMc2031364
Cole, 2021
2020, An integrated national scale SARS-CoV-2 genomic surveillance network, Lancet Microbe., 1, e99, 10.1016/S2666-5247(20)30054-9
Crawford, 2020, Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays, Viruses, 12, E513, 10.3390/v12050513
Davies, 2021, Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England, Science, 372, eabg3055, 10.1126/science.abg3055
Davies, 2021, Increased hazard of death in community-tested cases of SARS-CoV-2 Variant of Concern 202012/01, medRxiv
Davies, 2021, Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7, Nature, 10.1038/s41586-021-03426-1
Day, 2020, On the evolutionary epidemiology of SARS-CoV-2, Curr. Biol., 30, R849, 10.1016/j.cub.2020.06.031
Deng, 2020, Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California, Science, 369, 582, 10.1126/science.abb9263
Drew, 2020, The importance of cycle threshold values in interpreting molecular tests for SARS-CoV-2, Diagn. Microbiol. Infect. Dis., 98, 115130, 10.1016/j.diagmicrobio.2020.115130
Drummond, 2012, Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 29, 1969, 10.1093/molbev/mss075
Elbe, 2017, Data, disease and diplomacy: GISAID’s innovative contribution to global health, Glob. Chall., 1, 33, 10.1002/gch2.1018
Faria, 2021, Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil, medRxiv
Fontanet, 2021, SARS-CoV-2 variants and ending the COVID-19 pandemic, Lancet, 397, 952, 10.1016/S0140-6736(21)00370-6
Gangavarapu, 2020
Garcia-Beltran, 2021, Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell, 10.1016/j.cell.2021.03.013
Hoffmann, 2020, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, 181, 271, 10.1016/j.cell.2020.02.052
Hou, 2020, SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science, 370, 1464, 10.1126/science.abe8499
Hu, 2021, Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies, Cell. Mol. Immunol., 18, 1061, 10.1038/s41423-021-00648-1
Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772, 10.1093/molbev/mst010
Kearse, 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28, 1647, 10.1093/bioinformatics/bts199
Kemp, 2021, SARS-CoV-2 evolution during treatment of chronic infection, Nature, 592, 277, 10.1038/s41586-021-03291-y
Khanna, 2020, Binding of SARS-CoV-2 spike protein to ACE2 is disabled by thiol-based drugs; evidence from in vitro SARS-CoV-2 infection studies, bioRxiv
Klimstra, 2020, SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients, J. Gen. Virol., 101, 1156, 10.1099/jgv.0.001481
Korber, 2020, Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus, Cell, 182, 812, 10.1016/j.cell.2020.06.043
Lan, 2020, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 581, 215, 10.1038/s41586-020-2180-5
Lau, 2021, Neutralizing antibody titres in SARS-CoV-2 infections, Nat. Commun., 12, 63, 10.1038/s41467-020-20247-4
Leung, 2021, Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020, Euro Surveill., 26, 2002106, 10.2807/1560-7917.ES.2020.26.1.2002106
Liu, 2020, Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization, bioRxiv
Liu, 2021, Neutralizing Activity of BNT162b2-Elicited Serum - Preliminary Report, N. Engl. J. Med., 10.1056/NEJMc2102017
Msomi, 2020, A genomics network established to respond rapidly to public health threats in South Africa, Lancet Microbe, 1, e229, 10.1016/S2666-5247(20)30116-6
Plante, 2021, Spike mutation D614G alters SARS-CoV-2 fitness, Nature, 592, 116, 10.1038/s41586-020-2895-3
Quick, 2017, Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples, Nat. Protoc., 12, 1261, 10.1038/nprot.2017.066
Rai, 2021, Estimates of serial interval for COVID-19: A systematic review and meta-analysis, Clin. Epidemiol. Glob. Health, 9, 157, 10.1016/j.cegh.2020.08.007
Rambaut, 2021
Rambaut, 2018, Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7, Syst. Biol., 67, 901, 10.1093/sysbio/syy032
Rambaut, 2020, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology, Nat. Microbiol., 5, 1403, 10.1038/s41564-020-0770-5
Rambaut, 2020
Sabino, 2021, Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence, Lancet, 397, 452, 10.1016/S0140-6736(21)00183-5
Sachs, 2019, Long-term expanding human airway organoids for disease modeling, EMBO J., 38, e100300, 10.15252/embj.2018100300
Samuel, 2020, Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men, Cell Stem Cell, 27, 876, 10.1016/j.stem.2020.11.009
Seow, 2020, Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans, Nat. Microbiol., 5, 1598, 10.1038/s41564-020-00813-8
Shu, 2017, GISAID: Global initiative on sharing all influenza data - from vision to reality, Euro Surveill., 22, 30494, 10.2807/1560-7917.ES.2017.22.13.30494
Tegally, 2020, Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa, medRxiv
Teng, 2021, Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity, Brief. Bioinform., 22, 1239, 10.1093/bib/bbaa233
Volz, 2020, Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data, medRxiv
Wang, 2005, Assays for the assessment of neutralizing antibody activities against Severe Acute Respiratory Syndrome (SARS) associated coronavirus (SCV), J. Immunol. Methods, 301, 21, 10.1016/j.jim.2005.03.008
Wang, 2021, mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants, Nature, 592, 616, 10.1038/s41586-021-03324-6
Washington, 2021, Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States, medRxiv
Wibmer, 2021, SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma, Nat. Med., 27, 622, 10.1038/s41591-021-01285-x
Wise, 2021, Covid-19: The E484K mutation and the risks it poses, BMJ, 372, n359, 10.1136/bmj.n359
Wu, 2021, Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine, N. Engl. J. Med., 10.1056/NEJMc2102179
Wu, 2021, mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants, bioRxiv
Xie, 2021, Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera, Nat. Med., 27, 620, 10.1038/s41591-021-01270-4
Zhang, 2021, Emergence of a Novel SARS-CoV-2 Variant in Southern California, JAMA, 325, 1324, 10.1001/jama.2021.1612
Zhou, 2021, SARS-CoV-2 spike D614G change enhances replication and transmission, Nature, 592, 122, 10.1038/s41586-021-03361-1
Zhu, 2020, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med., 382, 727, 10.1056/NEJMoa2001017