Investigation of carbon monoxide gas adsorption on the Al2O3/Pd(NO3)2/zeolite composite film
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sandilands, E.A., Bateman, D.N.: Carbon monoxide. Medicine (2016). https://doi.org/10.1016/j.mpmed.2015.12.024
Berea, E., Montoro, C., Navarro, J.A.R.: Toxic gas removal—metal–organic frameworks for the capture and degradation of toxic gases and vapor. Chem. Soc. Rev. (2014). https://doi.org/10.1039/C3CS60475F
Goldstein, M.: Carbon monoxide poisoning. J. Emerg. Nurs. (2008). https://doi.org/10.1016/j.jen.2007.11.014
Raub, J.: World Health Organization & International Programme on Chemical Safety, Carbon Monoxide, 2nd ed. World Health Organization (1999). https://apps.who.int/iris/handle/10665/42180
Glover, T.G., Peterson, G.W., Schindler, B.J., Britt, D., Yagi, O.: MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. (2011). https://doi.org/10.1016/j.ces.2010.10.002
Yin, X., Dastan, D., Wu, F., Li, J.: Facile synthesis of SnO2/LaFeO3 − XNX composite: photocatalytic activity and gas sensing performance. Nanomaterials (2019). https://doi.org/10.3390/nano9081163
Mozaffari, N., Elahi, S.H., Parhizgar, S.S., Mozaffari, N., Elahi, S.M.: The effect of annealing and layer numbers on the optical and electrical properties of cobalt-doped TiO2 thin films. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab4662
Yin, X., Zhou, W.D., Li, J., Wang, Q., Wu, F.Y., Dastan, D., Wang, D., Garmestani, H., Wang, X.M., Talu, S.: A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.07.081
Yin, X.T., Zhou, W.D., Li, J., Lv, P., Wang, Q., Wang, D., Wu, F.Y., Dastan, D., Garmestani, H., Shi, Z., Ţălu, S.: Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub ppm level of hydrogen gas detection. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01840-w
Hung, C.-T., Bai, H.: Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method. Chem. Eng. Sci. (2008). https://doi.org/10.1016/j.ces.2008.01.002
Serrano, D.P., Calleja, G., Botas, J.A., Gutierrez, F.J.: Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and beta zeolites by TPD techniques. Sep. Purif. Techol. (2007). https://doi.org/10.1016/j.seppur.2006.08.013
Zare, M., Solaymani, S., Shafiekhani, A., Kulesza, S., Ţălu, S., Bramowicz, M.: Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-29247-3
Talu, S., Bramowicz, M., Kulesza, S., Shafiekhani, A., Ghaderi, A., Mashayekhi, F., Solaymani, S.: Microstructure and tribological properties of Fe NPs @ a-C: H films by micromorphology analysis and fractal geometry. Ind. Eng. Chem. Res. (2015). https://doi.org/10.1021/acs.iecr.5b02449
Ţălu, S., Bramowicz, M., Kulesza, S., Ghaderi, A., Dalouji, V., Solaymani, S., Khalaj, Z.: Microstructure and micromorphology of Cu/Co nanoparticles: surface texture analysis. Electron. Mater. Lett. (2016). https://doi.org/10.1007/s13391-016-6036-y
Talu, S., Bramowicz, M., Kulesza, S., Dalouji, V., Solaymani, S., Valedbagi, S.: Fractal features of carbon–nickel composite thin films. Microsc. Res. Tech. (2016). https://doi.org/10.1002/jemt.22779
Bobbitt, N.S., Mendonca, M.L., Howarth, A.J., Islamoglu, T., Hupp, J.T., Farha, O.K., Snurr, R.Q.: Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. (2017). https://doi.org/10.1039/C7CS00108H
Britt, D., Tranche Montagne, D., Yaghi, O.M.: Metal–organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA (2008). https://doi.org/10.1073/pnas.0804900105
Lehman, S.E., Larsen, S.C.: Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ. Sci.: Nano (2014). https://doi.org/10.1039/C4EN00031E
Moitra, N., Trens, P., Raehm, L., Durand, J.O., Cattoen, X., Wong Chi Man, M.: Facile route to functionalized mesoporous silica nanoparticles by click chemistry. J. Mater. Chem. (2011). https://doi.org/10.1039/c1jm12066b
Yeom, C., Kim, Y.: Mesoporous alumina with high capacity for carbon monoxide adsorption. Korean J. Chem. Eng. (2017). https://doi.org/10.1007/s11814-017-0309-5
Walcarius, A., Mercier, L.: Mesoporous organosilicon adsorbents: Nano engineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. (2010). https://doi.org/10.1039/B924316J
Yeom, C., Selvaraj, R., Kim, Y.: Preparation of nonporous alumina using aluminum chloride via precipitation templating method for CO adsorbent. J. Ind. Eng. Chem. (2017). https://doi.org/10.1016/j.jiec.2018.06.023
Li, Z., Barnes, J.C., Bosoy, A., Stoddart, J.F., Zink, J.I.: Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. (2012). https://doi.org/10.1039/C1CS15246G
Chen, C., Ann, W.S.: CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem. Eng. J. (2011). https://doi.org/10.1016/j.cej.2010.11.038
Rengaraj, S., Kim, Y., Yeon, J.-W., Kim, W.-H.: Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm, and error analysis. Ind. Eng. Chem. Res. (2007). https://doi.org/10.1021/ie060994n
Dejam, L., Solaymani, S., Achour, A., Stach, S., Talu, S., Beryani Nezafat, N., Dalouji, V., Shokri, A.A., Ghaderi, A.: Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem. Phys. Lett. (2019). https://doi.org/10.1016/j.cplett.2019.01.042
Thote, J.A., Chatti, R.V., Iyer, K.S., Kumar, V., Valechha, A.N., Labhsetwar, N.K., Biniwale, R.B., Yankee, M.K.N., Rayalu, S.S.: N-doped mesoporous alumina for adsorption of carbon dioxide. J. Environ. Sci. (2012). https://doi.org/10.1016/S1001-0742(11)61022-X
Souza Santos, P., Souza Santos, H., Toledo, S.P.: Standard transition alumina. Electron microscopy studies. Mat. Res. 10, 11 (2000). https://doi.org/10.1590/S1516-14392000000400003
Macêdo, M., Bertran, C., Osawa, C.: Kinetics of the γ → α -alumina phase transformation by quantitative X-ray diffraction. J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-1364-1
Shek, C.H., Lai, J.K.L., Gu, T.S., Lin, G.M.: Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders. Nanostruct. Mater. (1997). https://doi.org/10.1016/S0965-9773(97)00201-8
Euzen, F.P., Raybaud, P., Krokidis, X., Toulhoat, H., LeLoarer, J.L., Jolivet, J.P., Froidefond, C., Schüth, F., Sing, K.S.W., Weitkamp, J.: Alumina—Handbook of Porous Solids. Wiley, Hoboken (2002)
Trueba, M., Trasatti, S.P.: γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur. J. Inorg. Chem. (2005). https://doi.org/10.1002/ejic.200500348
Xiao-lan, S., Peng, Q., Hai-pin, Y., Xi, H., Guan-zhou, Q., Synthesis of γ-Al2O3 nanoparticles by chemical precipitation method, J. CENT. SOUTH UNIV. TECHNOL. (2005). 1005 - 9784(2005)05 - 0536 – 06
Zhang, J., Li, H., Jiang, Z., Xie, Z.: Size and Shape Controlled Synthesis of Pd Nano crystals. Phys. Sci. Rev. (2018). https://doi.org/10.1515/psr-2017-0101
Narayanan, R., El-Sayed, M.A.: Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phy. Chem. B. (2005). https://doi.org/10.1021/jp051066p
Long, R., Rao, Z., Mao, K., Li, Y., Zhang, C., Liu, Q., Wang, C., Li, Z.Y., Wu, X., Xiong, Y.: Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. Angew. Chem. (2015). https://doi.org/10.1002/anie.201407785
Wu, J., Zeng, L., Cheng, D., Chen, F., Zhan, X., Gong, J.: Synthesis of Pd nanoparticles supported on CeO2 nanotubes for CO oxidation at low temperatures. Chin. J. Catal. (2016). https://doi.org/10.1016/S1872-2067(15)60913-5
Page, M.P., Mikel, J., Guan, K., Zhang, S., Tringe, J., Castro, R.H.R., Stroeve, P.: Gas adsorption properties of ZSM-5 zeolites heated to extreme temperatures. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.06.193
Alexander, L., Klug, H.P.: Determination of Crystallite Size with the X-Ray Spectrometer. J. Appl. Phys. (1950). https://doi.org/10.1063/1.1699612
Jbara, A.S., Othaman, Z., Ati, A.A., Saeed, M.A.: Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method. Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2016.12.015
Yin, X.T., Zhou, W.D., Li, J., Lv, P., Wang, Q., Wang, D., Wu, F.Y., Dastan, D., Garmestani, H., Shi, Z., Talu, S.: Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01840-w
Mozaffari, N., Elahi, S.M., Parhizgar, S.S.: Deposition of TiO2 multilayer thin films doped with cobalt and studying the effect of annealing temperatures and number of layers on the structural and morphological of thin films. Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2533-1
Tabesh, S., Davar, F., Estarki, M.R.L.: Estarki, Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.09.246
Samandari, S.S., Gulcan, H.O., Samandari, S.S., Gazi, M.: Efficient Removal of Anionic and Cationic Dyes from an Aqueous Solution Using Pullulan-graft-Polyacrylamide Porous Hydrogel. Water Air Soil Pollut. (2014). https://doi.org/10.1007/s11270-014-2177-5
Mungondori, H.H., Mtetwa, S., Tichagwa, L., Katwire, D.M., Nyamukamba, P.: Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption. Water Sci. Technol. (2017). https://doi.org/10.2166/wst.2017.123
Tanhaei, B., Ayati, A., Lahtinen, M., Sillanpää, M.: Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chem. Eng. J. (2015). https://doi.org/10.1016/j.cej.2014.07.109
Sizirici, B., Yildiz, I.: Adsorption capacity of iron oxide-coated gravel for landfill leachate: simultaneous study. Int. J. Environ. Sci. Technol. (2017). https://doi.org/10.1007/s13762-016-1207-9
Aly, Z., Graulet, A., Scales, N., Hanley, T.: Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies. Environ. Sci. Pollut. Res. (2014). https://doi.org/10.1007/s11356-013-2305-6
Lagergen, S.K.: About the Theory of So-called Adsorption of Soluble Substances. Sven. Vetenskapsakad, Handingarl (1898)
Negm, N.A., Abd El Wahed, M.G., Hassan, A.R.A., Abou Kana, M.T.H., Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics, J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.05.027
Idris, S.A., Alotaibi, K.M., Peshkur, T.A., Anderson, P., Morris, M., Gibson, L.T.: Adsorption kinetic study: Effect of adsorbent pore size distribution on the rate of Cr(VI) uptake. Micropor. Mesopor. Mat. (2013). https://doi.org/10.1016/j.micromeso.2012.08.001
Repo, E., Warchoł, J.K., Bhatnagar, A., Mudhoo, A., Sillanpää, M.: Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res. (2013). https://doi.org/10.1016/j.watres.2013.06.020
Chaudry, S.A., Khan, T.A., Ali, I.: Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egypt. J. Basic Appl. Sci. (2016). https://doi.org/10.1016/j.ejbas.2016.06.002
Changmai, M., Priyesh, J.P., Purkait, M.K.: Al2O3 nanoparticles synthesized using various oxidizing agents: Defluoridation performance. Journal of Science: Advanced Materials and Devices (2017). https://doi.org/10.1016/j.jsamd.2017.09.001
Shekarriz, M., Ramezani, Z., Elhami, F.: Preparation and characterization of ZSM5-supported nano-zero-valent iron and its potential application in nitrate remediation from aqueous solution. Int. J. Environ. Sci. Technol. (2017). https://doi.org/10.1007/s13762-016-1213-y
Hameed, B.H.: Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J. Hazard. Mater. (2009). https://doi.org/10.1016/j.jhazmat.2008.05.045
Cheung, W.H., Szeto, Y.S., McKay, G.: Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. (2007). https://doi.org/10.1016/j.biortech.2006.09.045