tert-Butyl Ethers of Renewable Diols as Oxygenated Additives for Motor Gasoline. Part I: Glycerol and Propylene Glycol Ethers
Tóm tắt
The study investigates tert-butoxy alkanols (otherwise defined as polyol tert-butyl ethers) that have vicinal tert-butoxy and hydroxy groups in their molecules from the perspective of their usability as oxygenated additives for motor gasoline. A series of propylene glycol mono-tert-butyl ether (PTBE) and glycerol di-tert-butyl ether (di-GTBE) samples were prepared: PTBE by direct acid-catalytic alkylation of diols with tert-butanol, and di-GTBE by alkylation of epichlorohydrin. Adding PTBE and di-GTBE to base motor gasoline was found to improve its antiknock performance: the average blending research octane number to blending motor octane number ratios (bRON/bMON) equaled 120/111 and 124/104 for PTBE and di-GTBE, respectively. Furthermore, the effects of the ether additives on the properties of ethanol-blended base gasoline were characterized. Finally, the study describes the effect of polyol tert-butyl ether additives on the cloud point depression of ethanol-blended gasoline (low-temperature phase stabilization) and demonstrates a positive synergistic effect of adding the ethers mixed with ethanol.
Tài liệu tham khảo
Dmitriev, G.S., Melchakov, I.S., Samoilov, V.O., Ramazanov, D.N., and Zanaveskin, L.N., Chemistry Select, 2022, vol. 7, no. 10, pp. 1–7. https://doi.org/10.1002/slct.202104257
Nadirov, N.K. and Slutskin, R.L., Kataliticheskoe gidrirovanie i gidrogenoliz uglevodov (Catalytic Hydrogenation and Hydrogenolysis of Carbohydrates), Moscow: Khimiya; 1976.
Satam, C.C., Daub, M., and Realff, M.J., Biofuel., Bioprod. Bioref., 2019, vol. 13, no. 5, pp. 1261–1273. https://doi.org/10.1002/BBB.2016
Lee, Y.G. and Seo, J.H., Biotechnol. Biofuel., 2019, vol. 12, no. 1, pp. 1–12. https://doi.org/10.1186/S13068-019-1545-1/FIGURES/6
Samoilov, V.O., Maximov, A.L., Stolonogova, T.I., Chernysheva, E.A., Kapustin, V.M., and Karpunina, A.O., Fuel, 2019, vol. 249, pp. 486–495. https://doi.org/10.1016/j.fuel.2019.02.098
Ilgen, O., Yerlikaya, S., and Akyurek, F.O., Period Polytech. Chem. Eng., 2016, vol. 61, no. 2, pp. 144–148. https://doi.org/10.3311/PPch.8895
Alptekin, E. and Canakci, M., Appl. Therm. Eng., 2017, vol. 124, pp. 504–509. https://doi.org/10.1016/j.applthermaleng.2017.06.064
Mota, C.J.A., Da Silva, C.X.A., Rosenbach, N., Costa, J., and Da Silva, F., Energ. Fuels, 2010, vol. 24, no. 18, pp. 2733–2736. https://doi.org/10.1021/ef9015735
Samoilov, V.O., Borisov, R.S., Stolonogova, T.I., Zarezin, D.P., Maximov, A.L., Bermeshev, M.V., Chernysheva, E.A., and Kapustin, V.M., Fuel, 2020, vol. 280, p. 118585. https://doi.org/10.1016/j.fuel.2020.118585
Samoilov, V., Ni, D., Goncharova, A., Zarezin, D., Kniazeva, M., Ladesov, A., Kosyakov, D., Bermeshev, M., and Maximov, A., Molecules., 2020, vol. 25, no. 7, p. 1723. https://doi.org/10.3390/molecules25071723
Saengarun, C., Petsom, A., and Tungasmita, D.N., Sci. World J., 2017, pp. 1–11. https://doi.org/10.1155/2017/4089036
Bozkurt, Ö.D., Yılmaz, F., Bağlar, N., Çelebi, S., and Uzun, A., Fuel, 2019, vol. 255, no. 5, p. 115767. https://doi.org/10.1016/j.fuel.2019.115767
Moity, L., Shi, Y., Molinier, V., Dayoub, W., Lemaire, M., and Aubry, J.M., J. Phys. Chem. B, 2013, vol. 117, no. 31, pp. 9262–9272. https://doi.org/10.1021/jp403347u
Soares, B.P., Abranches, D.O., Sintra, T.E., Leal-Duaso, A., García, J.I., Pires, E., Shimizu, S., Pinho, S.P., and Coutinho, J.A.P., ACS Sustain Chem. Eng., 2020, vol. 8, no. 14, pp. 5742–5749. https://doi.org/10.1021/acssuschemeng.0c01032
Varfolomeev, S.D., Nikiforov, G.A., Volieva, V.B., Makarov, G.G., and Trusov, L.I., Patent EP 2 298 851, 2012.
Wessendorf, R. and Wilfried, G., Patent Germany EP0718270A2, 1995.