Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters
Tài liệu tham khảo
Abeliovich, 1976, Toxicity of ammonia to algae in sewage oxidation ponds, Appl. Environ. Microbiol., 31, 801, 10.1128/AEM.31.6.801-806.1976
Arora, 2016, Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae, Environ. Sci. Pollut. Res., 23, 20997, 10.1007/s11356-016-7320-y
Belanger-Lepine, 2018, Cultivation of an algae-bacteria consortium in wastewater from an industrial park: effect of environmental stress and nutrient deficiency on lipid production, Bioresour. Technol., 267, 657, 10.1016/j.biortech.2018.07.099
Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/o59-099
Cheng, 2013, Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors, Bioresour. Technol., 144, 321, 10.1016/j.biortech.2013.06.122
Choi, 2015, Influence of crude glycerol on the biomass and lipid content of microalgae, Biotechnol. Biotechnol. Equip., 29, 506, 10.1080/13102818.2015.1013988
Edmundson, 2013, Landfill leachate—a water and nutrient resource for algae-based biofuels, Environ. Technol., 34, 1849, 10.1080/09593330.2013.826256
Gupta, 2018, Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of alpha-linolenic acid, Bioprocess Biosyst. Eng., 41, 531, 10.1007/s00449-017-1888-6
Ho, 2014, Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions, Bioresour. Technol., 156, 108, 10.1016/j.biortech.2014.01.017
Ji, 2014, Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater, Bioresour. Technol., 161, 200, 10.1016/j.biortech.2014.03.034
Kallqvist, 2003, Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta, Water Res., 37, 477, 10.1016/S0043-1354(02)00361-5
Koncagul, 2017
Koutra, 2018, Selection of microalgae intended for valorization of digestate from agro-waste mixtures, Waste Manag., 73, 123, 10.1016/j.wasman.2017.12.030
Lau, 2014, Recycling of food waste as nutrients in Chlorella vulgaris cultivation, Bioresour. Technol., 170, 144, 10.1016/j.biortech.2014.07.096
Lewitus, 1991, Physiological responses of phytoflagellates to dissolved organic substrates additions. 2. Dominant role of autotrophic nutrition in Pyrenomonas Salina (Cryptophyceae), Plant Cell Physiol., 32, 791
Lewitus, 1991, Effects of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae), J. Phycol., 27, 578, 10.1111/j.0022-3646.1991.00578.x
Lin, 2007, Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment, Waste Manag., 27, 1376, 10.1016/j.wasman.2006.09.001
Liu, 2008, Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum, J. Appl. Phycol., 21, 239, 10.1007/s10811-008-9355-z
Lizzul, 2014, Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases, Bioresour. Technol., 151, 12, 10.1016/j.biortech.2013.10.040
Mahapatra, 2014, Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater, Bioresour. Technol., 168, 142, 10.1016/j.biortech.2014.03.130
Martinez, 1997, Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth, Process Biochem., 32, 93, 10.1016/S0032-9592(96)00045-3
Meixner, 2016, Processing recommendations for using low-solids digestate as nutrient solution for poly-beta-hydroxybutyrate production with Synechocystis salina, J. Biotechnol., 240, 61, 10.1016/j.jbiotec.2016.10.023
Moreno-Garcia, 2019, Optimization of the proportions of four wastewaters in a blend for the cultivation of microalgae using a mixture design, Bioresour. Technol., 283, 168, 10.1016/j.biortech.2019.03.067
Nakanishi, 2014, Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4, Bioresour. Technol., 152, 247, 10.1016/j.biortech.2013.11.009
Paskuliakova, 2018, Phycoremediation of landfill leachate with the chlorophyte Chlamydomonas sp SW15aRL and evaluation of toxicity pre and post treatment, Ecotoxicol. Environ. Saf., 147, 622, 10.1016/j.ecoenv.2017.09.010
Pereira, 2016, Nitrogen removal from landfill leachate by microalgae, Int. J. Mol. Sci., 17, 10.3390/ijms17111926
Pesheva, 1994, Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions, Plant Cell Physiol., 35, 379
Raven, 2016, Dark respiration and organic carbon loss, vol. 6, 3
Raven, 2016, Nutrients and their acquisition: combined nitrogen, vol. 6, 3
Ravindran, 2017, Recent advances and future prospects of microalgal lipid biotechnology, vol. 1, 5
Razzak, 2016, Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis, Bioprocess Biosyst. Eng., 39, 1651, 10.1007/s00449-016-1640-7
Tan, 2016, Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry, Bioresour. Technol., 221, 385, 10.1016/j.biortech.2016.09.030
Wahidin, S., Idris, A., Shaleh, S.R.M. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol., 129(0), 7–11.
Wang, 2014, Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels, Bioresour. Technol., 161, 124, 10.1016/j.biortech.2014.03.012
Zhao, 2014, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour. Technol., 156, 322, 10.1016/j.biortech.2013.12.112
Rice, 2012