LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention
Tài liệu tham khảo
Famprikis, 2019, Fundamentals of inorganic solid-state electrolytes for batteries, Nat. Mater., 18, 1278, 10.1038/s41563-019-0431-3
Xu, 2011, Self-organized core–shell structure for high-power electrode in solid-state lithium batteries, Chem. Mater., 23, 3798, 10.1021/cm103665w
Noguchi, 2013, Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds, Electrochim. Acta, 101, 59, 10.1016/j.electacta.2012.11.038
Feng, 2013, All solid state lithium ion rechargeable batteries using NASICON structured electrolyte, Mater. Technol., 28, 276, 10.1179/1753555713Y.0000000085
Ihlefeld, 2011, Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries, Adv. Mater., 23, 5663, 10.1002/adma.201102980
Lü, 2016, Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries, Adv. Mater., 3
Bron, 2013, Li10SnP2S12: an affordable lithium superionic conductor, J. Am. Chem. Soc., 135, 15694, 10.1021/ja407393y
Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066
Murugan, 2007, Fast lithium ion conduction in Garnet-type Li7La3Zr2O12, Angew. Chem. Int. Ed. Engl., 46, 7778, 10.1002/anie.200701144
Zhang, 2016, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide, Nano Energy, 28, 447, 10.1016/j.nanoen.2016.09.002
Guin, 2017, Stability of NASICON materials against water and CO2 uptake, Solid State Ion., 302, 102, 10.1016/j.ssi.2016.11.006
Cheng, 2019, Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating, Joule, 3, 1510, 10.1016/j.joule.2019.03.022
Liu, 2018, Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries, Adv. Energy Mater., 8, 10.1002/aenm.201702374
Chung, 2017, Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell, Chem. Mater., 29, 8611, 10.1021/acs.chemmater.7b02301
Yu, 2019, Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries, ACS Appl. Mater. Interfaces, 11, 9911, 10.1021/acsami.8b20413
Zhang, 2017, An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life, J. Mater. Chem. A, 5, 16984, 10.1039/C7TA04320A
Liu, 2018, Kinetically determined phase transition from stage II (LiC12) to stage I (LiC6) in a graphite anode for Li-ion batteries, J. Phys. Chem. Lett., 9, 5567, 10.1021/acs.jpclett.8b02750
Fan, 2018, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4, eaau9245, 10.1126/sciadv.aau9245
Han, 2021, Functionalized gel polymer electrolyte membrane for high performance Li metal batteries, Solid State Ion., 361, 10.1016/j.ssi.2021.115572
Wang, 2020, Interfacial engineering at cathode/LATP interface for high-performance solid-state batteries, J. Electrochem. Soc., 167
Chen, 2020, High energy density hybrid solid-state Li-ion batteries enabled by a Gel/ceramic/Gel sandwich electrolyte, ACS Appl. Energy Mater., 3, 5113, 10.1021/acsaem.0c00574
Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst., 44, 1272, 10.1107/S0021889811038970
Dolotko, 2014, Neutron diffraction study of Li4Ti5O12 at low temperatures, Solid State Sci., 36, 101, 10.1016/j.solidstatesciences.2014.08.002
Weiss, 2018, Correlating transport and structural properties in Li1+xAlxGe2–x(PO4)3 (LAGP) prepared from aqueous solution, ACS Appl. Mater. Interfaces, 10, 10935, 10.1021/acsami.8b00842
Monchak, 2016, Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor, Inorg. Chem., 55, 2941, 10.1021/acs.inorgchem.5b02821
Sun, 2019, Preparation and ionic conduction of Li1. 5Al0. 5Ge1.5 (PO4)3 solid electrolyte using inorganic germanium as precursor, J. Eur. Ceram. Soc., 39, 402, 10.1016/j.jeurceramsoc.2018.09.025
Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821
Xiong, 2020, Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001444
Zou, 2020, Achieving safe and dendrite-suppressed solid-state Li batteries via a novel self-extinguished trimethyl phosphate-based wetting agent, Energy Fuels, 34, 11547, 10.1021/acs.energyfuels.0c02222
Meesala, 2018, All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion, J. Phys. Chem. C, 122, 14383, 10.1021/acs.jpcc.8b03971
Hu, 2020, Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries, ACS Appl. Mater. Interfaces, 12, 12793, 10.1021/acsami.9b21717
Zhang, 2019, Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode, Electrochim. Acta, 297, 281, 10.1016/j.electacta.2018.11.206
Liu, 2020, Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification, Energy Storage Mater., 25, 613, 10.1016/j.ensm.2019.09.023
Liu, 2020, Self-healing Janus interfaces for high-performance LAGP-based lithium metal batteries, ACS Energy Lett., 5, 1456, 10.1021/acsenergylett.0c00542
Wang, 2019, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 11, 42715, 10.1021/acsami.9b12112
Zhang, 2020, Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures, Energy Storage Mater., 24, 714, 10.1016/j.ensm.2019.06.006
Wang, 2017, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9, 13694, 10.1021/acsami.7b00336
Hou, 2018, Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries, ACS Appl. Mater. Interfaces, 10, 18610, 10.1021/acsami.8b01003
Guo, 2017, New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9, 41837, 10.1021/acsami.7b12092
Tripathi, 2018, In situ analytical techniques for battery interface analysis, Chem. Soc. Rev., 47, 736, 10.1039/C7CS00180K
Chattopadhyay, 2012, In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode, Chem. Mater., 24, 3038, 10.1021/cm301584r
Nie, 2013, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, J. Phys. Chem. C, 117, 1257, 10.1021/jp3118055
Jurng, 2018, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes, Energy Environ. Sci., 11, 2600, 10.1039/C8EE00364E
Heiskanen, 2019, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3, 2322, 10.1016/j.joule.2019.08.018
Liu, 2019, In situ quantification of interphase chemistry in Li-ion battery, Nat. Nanotechnol., 14, 50, 10.1038/s41565-018-0284-y
An, 2016, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52, 10.1016/j.carbon.2016.04.008
Duncan, 2010, Study of the cathode–electrolyte interface of LiMn1. 5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries, J. Electrochem. Soc., 157, A528, 10.1149/1.3321710
Verma, 2010, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 55, 6332, 10.1016/j.electacta.2010.05.072
Bolloju, 2019, Pentafluorophenyl) diphenylphosphine as a dual-functional electrolyte additive for LiNi0. 5Mn1. 5O4 cathodes in high-voltage lithium-ion batteries, Electrochim. Acta, 299, 663, 10.1016/j.electacta.2019.01.037
Kosova, 2008, Lithium conductivity and lithium diffusion in NASICON-type Li1+ xTi2–xAlx(PO4)3 (x = 0; 0.3) prepared by mechanical activation, Ionics, 14, 303, 10.1007/s11581-007-0197-5
Junaid, 2008, Raman and FTIR studies of the structural aspects of NASICON-type crystals; AFeTi(PO4)3 [A = Ca, Cd], J. Phys. Chem. Solids, 69, 1985, 10.1016/j.jpcs.2008.02.008
Zuo, 2016, Vinyl ethylene carbonate as an electrolyte additive for high-voltage LiNi0.4Mn0.4Co0.2O2/graphite Li-ion batteries, Ionics, 22, 201, 10.1007/s11581-015-1536-6
Li, 2012, Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro (oxalate) borate and sulfolane, J. Power Source, 217, 503, 10.1016/j.jpowsour.2012.05.114
Vogl, 2015, The mechanism of SEI formation on a single crystal Si (100) electrode, J. Electrochem. Soc., 162, A603, 10.1149/2.0391504jes
Vogl, 2015, The mechanism of SEI formation on single crystal Si (100), Si (110) and Si (111) electrodes, J. Electrochem. Soc., 162, A2281, 10.1149/2.0361512jes
Xiao, 2009, Examining the solid electrolyte interphase on binder-free graphite electrodes, J. Electrochem. Soc., 156, A318, 10.1149/1.3078020
Chen, 2020, Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries, Nat. Energy, 5, 386, 10.1038/s41560-020-0601-1
Ren, 2015, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun., 57, 27, 10.1016/j.elecom.2015.05.001
Jiang, 2021, Solid-state Li metal battery enabled by cold sintering at 120°C, Mater, Today Phys, 20