LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention

Energy Storage Materials - Tập 48 - Trang 145-154 - 2022
Pengfeng Jiang1, Jiaqi Cao1, Bin Wei1, Guoyu Qian1, Shaofei Wang2,3, Yuansheng Shi1, Guangyuan Du1, Xueyi Lu1, Chuying Ouyang3, Fahe Cao1, Xia Lu1
1School of Materials, Sun Yat-sen University, Guangzhou 510275, China
2Australian Center for Neuron Scattering, Australian Nuclear Science and Technology Organization, Kirrawee DC, New South Wales 2232, Australia
321C Innovation Laboratory, Contemporary Amperex Technology Ltd. (CATL), Ningde 352100, China

Tài liệu tham khảo

Famprikis, 2019, Fundamentals of inorganic solid-state electrolytes for batteries, Nat. Mater., 18, 1278, 10.1038/s41563-019-0431-3 Xu, 2011, Self-organized core–shell structure for high-power electrode in solid-state lithium batteries, Chem. Mater., 23, 3798, 10.1021/cm103665w Noguchi, 2013, Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds, Electrochim. Acta, 101, 59, 10.1016/j.electacta.2012.11.038 Feng, 2013, All solid state lithium ion rechargeable batteries using NASICON structured electrolyte, Mater. Technol., 28, 276, 10.1179/1753555713Y.0000000085 Ihlefeld, 2011, Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries, Adv. Mater., 23, 5663, 10.1002/adma.201102980 Lü, 2016, Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries, Adv. Mater., 3 Bron, 2013, Li10SnP2S12: an affordable lithium superionic conductor, J. Am. Chem. Soc., 135, 15694, 10.1021/ja407393y Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066 Murugan, 2007, Fast lithium ion conduction in Garnet-type Li7La3Zr2O12, Angew. Chem. Int. Ed. Engl., 46, 7778, 10.1002/anie.200701144 Zhang, 2016, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide, Nano Energy, 28, 447, 10.1016/j.nanoen.2016.09.002 Guin, 2017, Stability of NASICON materials against water and CO2 uptake, Solid State Ion., 302, 102, 10.1016/j.ssi.2016.11.006 Cheng, 2019, Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating, Joule, 3, 1510, 10.1016/j.joule.2019.03.022 Liu, 2018, Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries, Adv. Energy Mater., 8, 10.1002/aenm.201702374 Chung, 2017, Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell, Chem. Mater., 29, 8611, 10.1021/acs.chemmater.7b02301 Yu, 2019, Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries, ACS Appl. Mater. Interfaces, 11, 9911, 10.1021/acsami.8b20413 Zhang, 2017, An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life, J. Mater. Chem. A, 5, 16984, 10.1039/C7TA04320A Liu, 2018, Kinetically determined phase transition from stage II (LiC12) to stage I (LiC6) in a graphite anode for Li-ion batteries, J. Phys. Chem. Lett., 9, 5567, 10.1021/acs.jpclett.8b02750 Fan, 2018, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4, eaau9245, 10.1126/sciadv.aau9245 Han, 2021, Functionalized gel polymer electrolyte membrane for high performance Li metal batteries, Solid State Ion., 361, 10.1016/j.ssi.2021.115572 Wang, 2020, Interfacial engineering at cathode/LATP interface for high-performance solid-state batteries, J. Electrochem. Soc., 167 Chen, 2020, High energy density hybrid solid-state Li-ion batteries enabled by a Gel/ceramic/Gel sandwich electrolyte, ACS Appl. Energy Mater., 3, 5113, 10.1021/acsaem.0c00574 Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst., 44, 1272, 10.1107/S0021889811038970 Dolotko, 2014, Neutron diffraction study of Li4Ti5O12 at low temperatures, Solid State Sci., 36, 101, 10.1016/j.solidstatesciences.2014.08.002 Weiss, 2018, Correlating transport and structural properties in Li1+xAlxGe2–x(PO4)3 (LAGP) prepared from aqueous solution, ACS Appl. Mater. Interfaces, 10, 10935, 10.1021/acsami.8b00842 Monchak, 2016, Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor, Inorg. Chem., 55, 2941, 10.1021/acs.inorgchem.5b02821 Sun, 2019, Preparation and ionic conduction of Li1. 5Al0. 5Ge1.5 (PO4)3 solid electrolyte using inorganic germanium as precursor, J. Eur. Ceram. Soc., 39, 402, 10.1016/j.jeurceramsoc.2018.09.025 Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821 Xiong, 2020, Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001444 Zou, 2020, Achieving safe and dendrite-suppressed solid-state Li batteries via a novel self-extinguished trimethyl phosphate-based wetting agent, Energy Fuels, 34, 11547, 10.1021/acs.energyfuels.0c02222 Meesala, 2018, All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion, J. Phys. Chem. C, 122, 14383, 10.1021/acs.jpcc.8b03971 Hu, 2020, Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries, ACS Appl. Mater. Interfaces, 12, 12793, 10.1021/acsami.9b21717 Zhang, 2019, Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode, Electrochim. Acta, 297, 281, 10.1016/j.electacta.2018.11.206 Liu, 2020, Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification, Energy Storage Mater., 25, 613, 10.1016/j.ensm.2019.09.023 Liu, 2020, Self-healing Janus interfaces for high-performance LAGP-based lithium metal batteries, ACS Energy Lett., 5, 1456, 10.1021/acsenergylett.0c00542 Wang, 2019, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 11, 42715, 10.1021/acsami.9b12112 Zhang, 2020, Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures, Energy Storage Mater., 24, 714, 10.1016/j.ensm.2019.06.006 Wang, 2017, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9, 13694, 10.1021/acsami.7b00336 Hou, 2018, Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries, ACS Appl. Mater. Interfaces, 10, 18610, 10.1021/acsami.8b01003 Guo, 2017, New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9, 41837, 10.1021/acsami.7b12092 Tripathi, 2018, In situ analytical techniques for battery interface analysis, Chem. Soc. Rev., 47, 736, 10.1039/C7CS00180K Chattopadhyay, 2012, In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode, Chem. Mater., 24, 3038, 10.1021/cm301584r Nie, 2013, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, J. Phys. Chem. C, 117, 1257, 10.1021/jp3118055 Jurng, 2018, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes, Energy Environ. Sci., 11, 2600, 10.1039/C8EE00364E Heiskanen, 2019, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3, 2322, 10.1016/j.joule.2019.08.018 Liu, 2019, In situ quantification of interphase chemistry in Li-ion battery, Nat. Nanotechnol., 14, 50, 10.1038/s41565-018-0284-y An, 2016, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52, 10.1016/j.carbon.2016.04.008 Duncan, 2010, Study of the cathode–electrolyte interface of LiMn1. 5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries, J. Electrochem. Soc., 157, A528, 10.1149/1.3321710 Verma, 2010, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 55, 6332, 10.1016/j.electacta.2010.05.072 Bolloju, 2019, Pentafluorophenyl) diphenylphosphine as a dual-functional electrolyte additive for LiNi0. 5Mn1. 5O4 cathodes in high-voltage lithium-ion batteries, Electrochim. Acta, 299, 663, 10.1016/j.electacta.2019.01.037 Kosova, 2008, Lithium conductivity and lithium diffusion in NASICON-type Li1+ xTi2–xAlx(PO4)3 (x = 0; 0.3) prepared by mechanical activation, Ionics, 14, 303, 10.1007/s11581-007-0197-5 Junaid, 2008, Raman and FTIR studies of the structural aspects of NASICON-type crystals; AFeTi(PO4)3 [A = Ca, Cd], J. Phys. Chem. Solids, 69, 1985, 10.1016/j.jpcs.2008.02.008 Zuo, 2016, Vinyl ethylene carbonate as an electrolyte additive for high-voltage LiNi0.4Mn0.4Co0.2O2/graphite Li-ion batteries, Ionics, 22, 201, 10.1007/s11581-015-1536-6 Li, 2012, Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro (oxalate) borate and sulfolane, J. Power Source, 217, 503, 10.1016/j.jpowsour.2012.05.114 Vogl, 2015, The mechanism of SEI formation on a single crystal Si (100) electrode, J. Electrochem. Soc., 162, A603, 10.1149/2.0391504jes Vogl, 2015, The mechanism of SEI formation on single crystal Si (100), Si (110) and Si (111) electrodes, J. Electrochem. Soc., 162, A2281, 10.1149/2.0361512jes Xiao, 2009, Examining the solid electrolyte interphase on binder-free graphite electrodes, J. Electrochem. Soc., 156, A318, 10.1149/1.3078020 Chen, 2020, Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries, Nat. Energy, 5, 386, 10.1038/s41560-020-0601-1 Ren, 2015, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun., 57, 27, 10.1016/j.elecom.2015.05.001 Jiang, 2021, Solid-state Li metal battery enabled by cold sintering at 120°C, Mater, Today Phys, 20