Mechanical properties of C60 at finite temperature from first-principles calculations
Tài liệu tham khảo
Dresselhaus, 1996
2000
Beck, 1991, Resilience of all-carbon molecules c60, c70, and c84: a surface-scattering time-of-flight investigation, J. Phys. Chem., 95, 8402, 10.1021/j100174a066
Mowrey, 1991, Simulations of c60 collisions with a hydrogen-terminated diamond (111) surface, J. Phys. Chem., 95, 7138, 10.1021/j100172a011
Galli, 1994, Large scale quantum simulations: C60 impacts on a semiconducting surface, Phys. Rev. Lett., 73, 3471, 10.1103/PhysRevLett.73.3471
Pan, 1998, Simulations of c60 in collision with diamond surfaces, Nucl. Instrum. Meth. Phys. Res. B, 135, 346, 10.1016/S0168-583X(97)00609-5
Woo, 1992, Bulk modulus of the c60 molecule via the tight binding method, Phys. Lett. A, 162, 501, 10.1016/0375-9601(92)90014-D
Cai, 2004, Application of the tight-binding method to the elastic modulus of c60 and carbon nanotube, Physica B, 344, 99, 10.1016/j.physb.2003.10.003
Ghavanloo, 2018, Computational modeling of the effective Young's modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model, J. Mol. Model., 24, 1
Brenner, 1991, Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed buckminsterfullerene, Thin Solid Films, 206, 220, 10.1016/0040-6090(91)90425-W
Zhang, 2003, Simulations of the nanomechanical properties of compressed small fullerenes, Modern Phys.Lett.B, 17, 877, 10.1142/S021798490300586X
Shen, 2007, The compressive mechanical properties of Cn(n=20, 60, 80, 180) and endohedral m@c60(m=Na, Al, Fe) fullerene molecules, Mol. Phys., 105, 2405, 10.1080/00268970701679467
Yakobson, 2001, Mechanical properties of carbon nanotubes, 287, 10.1007/3-540-39947-X_12
2014
Hoen, 1992, Elastic properties of a van der Waals solid:c60, Phys. Rev. B, 46, 12737, 10.1103/PhysRevB.46.12737
Matsumuro, 1998, Mechanical properties of c60 bulk materials synthesized at high pressure, Rev. High Press. Sci. Technol., 7, 823, 10.4131/jshpreview.7.823
Qiu, 2006, Physical and mechanical properties of c60under high pressures and high temperatures, High Press. Res., 26, 175, 10.1080/08957950600834792
Funamori, 2020, Large elastic deformation of c60 nanowhiskers, Carbon, 169, 65, 10.1016/j.carbon.2020.07.061
Pizzagalli, 2020, Finite-temperature mechanical properties of nanostructures with first-principles accuracy, Phys. Rev. B, 102, 10.1103/PhysRevB.102.094102
Mordehai, 2011, Size effect in compression of single-crystal gold microparticles, Acta Mater., 59, 5202, 10.1016/j.actamat.2011.04.057
Hale, 2012, Dislocation morphology and nucleation within compressed Si nanospheres: a molecular dynamics study, Comput. Mater. Sci., 54, 280, 10.1016/j.commatsci.2011.11.004
Salah, 2017, Influence of surface atomic structure on the mechanical response of aluminum nanospheres under compression, Comput. Mater. Sci., 129, 273, 10.1016/j.commatsci.2016.12.033
Kilymis, 2018, Uniaxial compression of silicon nanoparticles: an atomistic study on the shape and size effects, Acta Mater., 158, 155, 10.1016/j.actamat.2018.07.063
Bian, 2018, Orientation-dependent deformation mechanisms of bcc niobium nanoparticles, Philos. Mag., 98, 1848, 10.1080/14786435.2018.1459059
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Giannozzi, 2017, Advanced capabilities for materials modelling with quantum ESPRESSO, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa8f79
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892
Feuston, 1991, Electronic and vibrational properties of c60 at finite temperature from ab initio molecular dynamics, Phys. Rev. B, 44, 4056, 10.1103/PhysRevB.44.4056
Yannoni, 1991, NMR determination of the bond lengths in c60, J. Am. Chem. Soc., 113, 3190, 10.1021/ja00008a068
Tassone, 1994, Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structures calculations, Phys. Rev. B, 50, 10561, 10.1103/PhysRevB.50.10561
Jónsson, 1998, Nudged elastic band method for finding minimum energy paths of transitions, Ch. 16, 385
Henkelman, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 113, 9901, 10.1063/1.1329672
Mahler Larsen, 2016, Robust structural identification via polyhedral template matching, Model. Simul. Mater. Sci. Eng., 24
Wang, 2007, Mechanical and electronic properties of c60 under structure distortion studied with density functional theory, Comp. Mat. Sci., 40, 537, 10.1016/j.commatsci.2007.02.003
Pawlak, 2011, Atomic-scale mechanical properties of orientated c60 molecules revealed by noncontact atomic force microscopy, ACS Nano, 5, 6349, 10.1021/nn201462g
Joachim, 1995, Electronic transparence of a single c60 molecule, Phys. Rev. Lett., 74, 2102, 10.1103/PhysRevLett.74.2102
Lantz, 1999, Measurement of forces during the modification of c60 islands, Surf. Sci., 437, 99, 10.1016/S0039-6028(99)00698-6
Seo, 2020, Molecular dynamics investigation on the nano-mechanical behaviour of c60 fullerene and its crystallized structure, Nanoscale, 12, 9849, 10.1039/D0NR00584C
Menéndez, 2000, Vibrational spectroscopy of c60
Li, 2007, The mechanics and physics of defect nucleation, Mater. Res. Soc. Bull., 32, 151, 10.1557/mrs2007.48
Zhu, 2008, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett., 100, 1
Römer, 2008, The elaborate structure of spider silk, Prion, 2, 154, 10.4161/pri.2.4.7490
Amodeo, 2021, Modeling the mechanical properties of nanoparticles: a review, C.R.Physique, 22, 1