A survey on computation offloading modeling for edge computing
Tài liệu tham khảo
Aazam, 2018, Offloading in fog computing for iot: review, enabling technologies, and research opportunities, Future Generat. Comput. Syst., 87, 278, 10.1016/j.future.2018.04.057
Abbas, 2018, Mobile edge computing: a survey, IEEE Internet Things J., 5, 450, 10.1109/JIOT.2017.2750180
Ai, 2018, Edge computing technologies for internet of things: a primer, Digit. Commun. Netw., 4, 77, 10.1016/j.dcan.2017.07.001
Al Faruque, 2016, Energy management-as-a-service over fog computing platform, IEEE Internet Things J., 3, 161, 10.1109/JIOT.2015.2471260
Ale, 2019, Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network, IEEE Internet Things J., 6, 5520, 10.1109/JIOT.2019.2903245
Aliyu, 2017, A game-theoretic based qos-aware capacity management for real-time edgeiot applications, 386
Alrowaily, 2018, Secure edge computing in iot systems: review and case studies, 440
Altman, 1999, ume 7
Amadeo, 2019, Sdn-managed provisioning of named computing services in edge infrastructures, IEEE Trans. Netw. Serv. Manag., 16, 1464, 10.1109/TNSM.2019.2945497
Baktir, 2017, How can edge computing benefit from software-defined networking: a survey, use cases, and future directions, IEEE Commun. Surv. Tutor., 19, 2359, 10.1109/COMST.2017.2717482
Baldini, 2017, 1
Baresi, 2019, Towards a serverless platform for edge computing, 1
Beckman, 2016, Waggle: an open sensor platform for edge computing, 1
Bedi, 2018, Review of internet of things (iot) in electric power and energy systems, IEEE Internet Things J., 5, 847, 10.1109/JIOT.2018.2802704
Bellavista, 2018, Human-enabled edge computing: exploiting the crowd as a dynamic extension of mobile edge computing, IEEE Commun. Mag., 56, 145, 10.1109/MCOM.2017.1700385
Bi, 2018, An admm based method for computation rate maximization in wireless powered mobile-edge computing networks, 1
Bi, 2018, Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading, IEEE Trans. Wireless Commun., 17, 4177, 10.1109/TWC.2018.2821664
Biookaghazadeh, 2018
Bowling, 2000
Boyd, 2011, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 10.1561/2200000016
Bruneo, 2016, Stack4things as a fog computing platform for smart city applications, 848
Cao, 2018, Distributed multiuser computation offloading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach, IEEE Trans. Veh. Technol., 67, 752, 10.1109/TVT.2017.2740724
Cao, 2019, Intelligent offloading in multi-access edge computing: a state-of-the-art review and framework, IEEE Commun. Mag., 57, 56, 10.1109/MCOM.2019.1800608
Chang, 2003, Multitime scale markov decision processes, IEEE Trans. Automat. Contr., 48, 976, 10.1109/TAC.2003.812782
Chen, 2015, Decentralized computation offloading game for mobile cloud computing, IEEE Trans. Parallel Distr. Syst., 26, 974, 10.1109/TPDS.2014.2316834
Chen, 2018, Task offloading for mobile edge computing in software defined ultra-dense network, IEEE J. Sel. Area. Commun., 36, 587, 10.1109/JSAC.2018.2815360
Chen, 2015, On the computation offloading at ad hoc cloudlet: architecture and service modes, IEEE Commun. Mag., 53, 18, 10.1109/MCOM.2015.7120041
Chen, 2016, Efficient multi-user computation offloading for mobile-edge cloud computing, IEEE/ACM Trans. Netw., 24, 2795, 10.1109/TNET.2015.2487344
Chen, 2018, Multi-user multi-task computation offloading in green mobile edge cloud computing, IEEE Trans. Serv. Comput.
Chen, 2019, Dynamic computation offloading in edge computing for internet of things, IEEE Internet Things J., 6, 4242, 10.1109/JIOT.2018.2875715
Cheng, 2019, Space/aerial-assisted computing offloading for iot applications: a learning-based approach, IEEE J. Sel. Area. Commun., 37, 1117, 10.1109/JSAC.2019.2906789
Chiang, 2016, Fog and iot: an overview of research opportunities, IEEE Internet Things J., 3, 854, 10.1109/JIOT.2016.2584538
Cicirelli, 2018, Edge computing and social internet of things for large-scale smart environments development, IEEE Internet Things J., 5, 2557, 10.1109/JIOT.2017.2775739
Consortium
Cuervo, 2010, Maui: making smartphones last longer with code offload
Dab, 2019, Q-learning algorithm for joint computation offloading and resource allocation in edge cloud, 45
Deep, 2009, A real coded genetic algorithm for solving integer and mixed integer optimization problems, Appl. Math. Comput., 212, 505, 10.1016/j.amc.2009.02.044
Del Testa, 2016, Optimal transmission policies for two-user energy harvesting device networks with limited state-of-charge knowledge, IEEE Trans. Wireless Commun., 15, 1393, 10.1109/TWC.2015.2489642
Deng, 2015, Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing, 3909
Deng, 2016, Adaptive sequential offloading game for multi-cell mobile edge computing, 1
Deng, 2016, Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption, IEEE Internet Things J., 3, 1171
Deng, 2016, Fine-granularity based application offloading policy in cloud-enhanced small cell networks, 638
Dinh, 2017, Offloading in mobile edge computing: task allocation and computational frequency scaling, IEEE Trans. Commun., 65, 3571
Du, 2018, Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee, IEEE Trans. Commun., 66, 1594, 10.1109/TCOMM.2017.2787700
Esposito, 2017, Challenges of connecting edge and cloud computing: a security and forensic perspective, IEEE Cloud Comput., 4, 13, 10.1109/MCC.2017.30
Facchinei, 2007, 173
Fudenberg, 1993
Grondman, 2012, A survey of actor-critic reinforcement learning: standard and natural policy gradients, IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews), 42, 1291, 10.1109/TSMCC.2012.2218595
Group
Guo, 2016, Mobile crowd sensing and computing: when participatory sensing meets participatory social media, IEEE Commun. Mag., 54, 131, 10.1109/MCOM.2016.7402272
Guo, 2018, An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing, IEEE/ACM Trans. Netw., 26, 2651, 10.1109/TNET.2018.2873002
Guo, 2018, Collaborative mobile edge computation offloading for iot over fiber-wireless networks, IEEE Netw., 32, 66, 10.1109/MNET.2018.1700139
He, 2018, Delay-aware energy efficient computation offloading for energy harvesting enabled fog radio access networks, 1
Hendrickson, 2016, 33
Hong, 2016, Qoe-aware computation offloading scheduling to capture energy-latency tradeoff in mobile clouds, 1
Hosseinabady, 2019
Hsu, 2018, Reconfigurable security: edge-computing-based framework for iot, IEEE Netw., 32, 92, 10.1109/MNET.2018.1700284
Hu, 2015, User-centric local mobile cloud-assisted d2d communications in heterogeneous cloud-rans, IEEE Wirel. Commun., 22, 59, 10.1109/MWC.2015.7143327
Hu, 2015, Mobile edge computinga key technology towards 5g, ETSI White Paper, 11, 1
Hu, 2017, Survey on fog computing: architecture, key technologies, applications and open issues, J. Netw. Comput. Appl., 98, 27, 10.1016/j.jnca.2017.09.002
Hu, 2018, Wireless powered cooperation-assisted mobile edge computing, IEEE Trans. Wireless Commun., 17, 2375, 10.1109/TWC.2018.2794345
Huang, 2012, A dynamic offloading algorithm for mobile computing, IEEE Trans. Wireless Commun., 11, 1991, 10.1109/TWC.2012.041912.110912
Huang, 2017, Exploring mobile edge computing for 5g-enabled software defined vehicular networks, IEEE Wirel. Commun., 24, 55, 10.1109/MWC.2017.1600387
Ismail, 2015
Jararweh, 2016, Sdmec: software defined system for mobile edge computing, 88
Ji, 2019, Energy-efficient cooperative resource allocation in wireless powered mobile edge computing, IEEE Internet Things J., 10.1109/JIOT.2018.2880812
Jiang, 2019, Toward computation offloading in edge computing: a survey, IEEE Access, 7, 131543, 10.1109/ACCESS.2019.2938660
Joilo, 2017, A game theoretic analysis of selfish mobile computation offloading, 1
Joilo, 2019, Decentralized algorithm for randomized task allocation in fog computing systems, IEEE/ACM Trans. Netw., 27, 85, 10.1109/TNET.2018.2880874
Kahan, 2014
Kamoun, 2015, Joint resource allocation and offloading strategies in cloud enabled cellular networks, 5529
Kim, 2014, Ambient rf energy-harvesting technologies for self-sustainable standalone wireless sensor platforms, Proc. IEEE, 102, 1649, 10.1109/JPROC.2014.2357031
Kim, 2018, Mobility support for vehicular cloud radio-access-networks with edge computing, 1
Ko, 2018, Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous networks, IEEE Access, 6, 18920, 10.1109/ACCESS.2018.2818111
Kreutz, 2015, Software-defined networking: a comprehensive survey, Proc. IEEE, 103, 14, 10.1109/JPROC.2014.2371999
Ku, 2016, Advances in energy harvesting communications: past, present, and future challenges, IEEE Commun. Surv. Tutor., 18, 1384, 10.1109/COMST.2015.2497324
Labidi, 2015, Energy-optimal resource scheduling and computation offloading in small cell networks, 313
Lau, 1997, Universal alignment probabilities and subset selection for ordinal optimization, J. Optim. Theor. Appl., 93, 455, 10.1023/A:1022614327007
Le, 2017, An optimization-based approach to offloading in ad-hoc mobile clouds, 1
Li, 2019, Computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing, IEEE Trans. Sustain. Comput., 10.1109/TSUSC.2019.2904680
Li, 2017, Energy efficient resource management and task scheduling for iot services in edge computing paradigm, 846
Li, 2011, Relay scheduling for cooperative communications in sensor networks with energy harvesting, IEEE Trans. Wireless Commun., 10, 2918, 10.1109/TWC.2011.070711.100778
Li, 2018, Learning iot in edge: deep learning for the internet of things with edge computing, IEEE Netw., 32, 96, 10.1109/MNET.2018.1700202
Li, 2018, Deep reinforcement learning based computation offloading and resource allocation for mec, 1
Lin, 2019, Offloading for edge computing in low power wide area networks with energy harvesting, IEEE Access, 7, 78919, 10.1109/ACCESS.2019.2922399
Lin, 2019, Computation offloading toward edge computing, Proc. IEEE, 107, 1584, 10.1109/JPROC.2019.2922285
Liu, 2016, Delay-optimal computation task scheduling for mobile-edge computing systems, 1451
Liu, 2016, Delay-optimized video traffic routing in software-defined interdatacenter networks, IEEE Trans. Multimed., 18, 865, 10.1109/TMM.2016.2538718
Liu, 2017, Incentive mechanism for computation offloading using edge computing: a stackelberg game approach, Comput. Network., 129, 399, 10.1016/j.comnet.2017.03.015
Liu, 2018, Socially aware dynamic computation offloading scheme for fog computing system with energy harvesting devices, IEEE Internet Things J., 5, 1869, 10.1109/JIOT.2018.2816682
Liu, 2018, Multiobjective optimization for computation offloading in fog computing, IEEE Internet Things J., 5, 283, 10.1109/JIOT.2017.2780236
Lobillo, 2014, An architecture for mobile computation offloading on cloud-enabled lte small cells, 1
Lorenzo, 2018, A robust dynamic edge network architecture for the internet of things, IEEE Netw., 32, 8, 10.1109/MNET.2018.1700263
Lyu, 2017, Optimal schedule of mobile edge computing for internet of things using partial information, IEEE J. Sel. Area. Commun., 35, 2606, 10.1109/JSAC.2017.2760186
Mach, 2017, Mobile edge computing: a survey on architecture and computation offloading, IEEE Commun. Surv. Tutor., 19, 1628, 10.1109/COMST.2017.2682318
Mao, 2016, Dynamic computation offloading for mobile-edge computing with energy harvesting devices, IEEE J. Sel. Area. Commun., 34, 3590, 10.1109/JSAC.2016.2611964
Mao, 2016, Power-delay tradeoff in multi-user mobile-edge computing systems, 1
Mao, 2017, A survey on mobile edge computing: the communication perspective, IEEE Commun. Surv. Tutor., 19, 2322, 10.1109/COMST.2017.2745201
Marjanovi, 2018, Edge computing architecture for mobile crowdsensing, IEEE Access, 6, 10662, 10.1109/ACCESS.2018.2799707
Marjanovi, 2018, Edge computing architecture for mobile crowdsensing, IEEE Access, 6, 10662, 10.1109/ACCESS.2018.2799707
Mavromatis, 2020, A software-defined iot device management framework for edge and cloud computing, IEEE Internet Things J., 7, 1718, 10.1109/JIOT.2019.2949629
Mehrabi, 2019, Device-enhanced mec: multi-access edge computing (mec) aided by end device computation and caching: a survey, IEEE Access, 7, 166079, 10.1109/ACCESS.2019.2953172
Meng, 2018, Delay-optimal computation offloading for computation-constrained mobile edge networks, 1
Meyn, 2012
Michelusi, 2013, Transmission policies for energy harvesting sensors with time-correlated energy supply, IEEE Trans. Commun., 61, 2988, 10.1109/TCOMM.2013.052013.120565
Michelusi, 2014, Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge, IEEE Trans. Commun., 62, 3969, 10.1109/TCOMM.2014.2359009
Min, 2019, Learning-based computation offloading for iot devices with energy harvesting, IEEE Trans. Veh. Technol., 68, 1930, 10.1109/TVT.2018.2890685
Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236
Mnih, 2016, Asynchronous methods for deep reinforcement learning, 1928
Monderer, 1996, Potential games, Game. Econ. Behav., 14, 124, 10.1006/game.1996.0044
Mukherjee, 2017, A fog computing-based framework to reduce traffic overhead in large-scale industrial applications, 1008
Mukherjee, 2018, Survey of fog computing: fundamental, network applications, and research challenges, IEEE Commun. Surv. Tutor., 20, 1826, 10.1109/COMST.2018.2814571
Munir, 2019, When edge computing meets microgrid: a deep reinforcement learning approach, IEEE Internet Things J., 10.1109/JIOT.2019.2899673
Muoz, 2015, Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading, IEEE Trans. Veh. Technol., 64, 4738, 10.1109/TVT.2014.2372852
Neely, 2010, Dynamic product assembly and inventory control for maximum profit, 2805
Neto, 2018, Uloof: a user level online offloading framework for mobile edge computing, IEEE Trans. Mobile Comput., 17, 2660, 10.1109/TMC.2018.2815015
Oueis, 2014, Small cell clustering for efficient distributed cloud computing, 1474
Oueis, 2015, Small cell clustering for efficient distributed fog computing: a multi-user case, 1
Ozel, 2011, Transmission with energy harvesting nodes in fading wireless channels: optimal policies, IEEE J. Sel. Area. Commun., 29, 1732, 10.1109/JSAC.2011.110921
Plastiras, 2018, Edge intelligence: challenges and opportunities of near-sensor machine learning applications, 1
Porambage, 2018, Survey on multi-access edge computing for internet of things realization, IEEE Commun. Surv. Tutor., 20, 2961, 10.1109/COMST.2018.2849509
Pu, 2016, D2d fogging: an energy-efficient and incentive-aware task offloading framework via network-assisted d2d collaboration, IEEE J. Sel. Area. Commun., 34, 3887, 10.1109/JSAC.2016.2624118
Puterman, 2005, 37
Qi, 2012, Research on mobile cloud computing: review, trend and perspectives, 195
Rafique, 2020, Complementing iot services through software defined networking and edge computing: a comprehensive survey, IEEE Commun. Surv. Tutor., 10.1109/COMST.2020.2997475
Ranadheera, 2017
Ren, 2017, Partial offloading for latency minimization in mobile-edge computing, 1
Roman, 2018, Mobile edge computing, fog etal.: a survey and analysis of security threats and challenges, Future Generat. Comput. Syst., 78, 680, 10.1016/j.future.2016.11.009
Ryder, 1979, Constructing the call graph of a program, IEEE Trans. Software Eng., SE-5, 216, 10.1109/TSE.1979.234183
Sabella, 2016, Mobile-edge computing architecture: the role of mec in the internet of things, IEEE Consum. Electron. Mag., 5, 84, 10.1109/MCE.2016.2590118
Salodkar, 2008, An on-line learning algorithm for energy efficient delay constrained scheduling over a fading channel, IEEE J. Sel. Area. Commun., 26, 732, 10.1109/JSAC.2008.080514
Samanta, 2019, Adaptive service offloading for revenue maximization in mobile edge computing with delay-constraint, IEEE Internet Things J., 6, 3864, 10.1109/JIOT.2019.2892398
Samanta, 2020, Dyme: dynamic microservice scheduling in edge computing enabled iot, IEEE Internet Things J., 10.1109/JIOT.2020.2981958
Sardellitti, 2015, Joint optimization of radio and computational resources for multicell mobile-edge computing, IEEE Trans. Signal Inf. Process. Netw., 1, 89
Sarkar, 2020, Serverless management of sensing systems for fog computing framework, IEEE Sensor. J., 20, 1564, 10.1109/JSEN.2019.2939182
Satyanarayanan, 2017, The emergence of edge computing, Computer, 50, 30, 10.1109/MC.2017.9
Satyanarayanan, 2009, The case for vm-based cloudlets in mobile computing, IEEE Pervasive Comput., 8, 14, 10.1109/MPRV.2009.82
Satyanarayanan, 2014, Cloudlets: at the leading edge of mobile-cloud convergence, 1
Scutari, 2017, Parallel and distributed methods for constrained nonconvex optimizationpart i: Theory, IEEE Trans. Signal Process., 65, 1929, 10.1109/TSP.2016.2637317
Secci, 2016, Linking virtual machine mobility to user mobility, IEEE Trans. Netw. Serv. Manag., 13, 927, 10.1109/TNSM.2016.2592241
Sen, 2019, Machine learning based timeliness-guaranteed and energy-efficient task assignment in edge computing systems, 1
Shaikh, 2016, Energy harvesting in wireless sensor networks: a comprehensive review, Renew. Sustain. Energy Rev., 55, 1041, 10.1016/j.rser.2015.11.010
Shan, 2018, A survey on computation offloading for mobile edge computing information, 248
Shi, 2016, Edge computing: vision and challenges, IEEE Internet Things J., 3, 637, 10.1109/JIOT.2016.2579198
Shi, 2018, Maga: a mobility-aware computation offloading decision for distributed mobile cloud computing, IEEE Internet Things J., 5, 164, 10.1109/JIOT.2017.2776252
Standard, 2016
Suganuma, 2018, Multiagent-based flexible edge computing architecture for iot, IEEE Netw., 32, 16, 10.1109/MNET.2018.1700201
Suh, 2017, The context-aware learning model: reward-based and experience-based logistic regression backpropagation, 1
Sun, 2016, Edgeiot: mobile edge computing for the internet of things, IEEE Commun. Mag., 54, 22, 10.1109/MCOM.2016.1600492CM
Sun, 2019, Joint offloading and computation energy efficiency maximization in a mobile edge computing system, IEEE Trans. Veh. Technol., 68, 3052
Sung, 2019, Virtual machine pre-provisioning for computation offloading service in edge cloud, 490
Sutton, 1998, ume 135
Taleb, 2017, On multi-access edge computing: a survey of the emerging 5g network edge cloud architecture and orchestration, IEEE Commun. Surv. Tutor., 19, 1657, 10.1109/COMST.2017.2705720
Tan, 2018, Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning, IEEE Trans. Veh. Technol., 67, 10190, 10.1109/TVT.2018.2867191
Tanaka, 2018, Multi-access edge computing: a survey, J. Inf. Process., 26, 87
Tanzil, 2015, Femto-cloud formation: a coalitional game-theoretic approach, 1
Tong, 2016, A hierarchical edge cloud architecture for mobile computing, 1
Tran, 2018, Joint task offloading and resource allocation for multi-server mobile-edge computing networks, IEEE Trans. Veh. Technol., 68, 856, 10.1109/TVT.2018.2881191
Tziritas, 2017, Data replication and virtual machine migrations to mitigate network overhead in edge computing systems, IEEE Trans. Sustain. Comput., 2, 320, 10.1109/TSUSC.2017.2715662
Varsha, 2017, The tactile internet, 419
Vita, 2018, A deep reinforcement learning approach for data migration in multi-access edge computing, 1
Wang, 2018, Dynamic interface-selection and resource allocation over heterogeneous mobile edge-computing wireless networks with energy harvesting, 190
Wang, 2012, Communication of energy harvesting tags, IEEE Trans. Commun., 60, 1159, 10.1109/TCOMM.2012.022912.110298
Wang, 2013
Wang, 2016, Mobile-edge computing: partial computation offloading using dynamic voltage scaling, IEEE Trans. Commun., 64, 4268
Wang, 2018, Joint offloading and computing optimization in wireless powered mobile-edge computing systems, IEEE Trans. Wireless Commun., 17, 1784, 10.1109/TWC.2017.2785305
Wang, 2018, A survey on service migration in mobile edge computing, IEEE Access, 6, 23511, 10.1109/ACCESS.2018.2828102
Wang, 2019, Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications, IEEE Trans. Ind. Inf., 15, 976, 10.1109/TII.2018.2883991
Waqas, 2019, Mobility-aware fog computing in dynamic environments: understandings and implementation, IEEE Access, 7, 38867, 10.1109/ACCESS.2018.2883662
Wei, 2019, Dynamic edge computation offloading for internet of things with energy harvesting: a learning method, IEEE Internet Things J., 1
Wu, 2018, Multi-objective decision-making for mobile cloud offloading: a survey, IEEE Access, 6, 3962, 10.1109/ACCESS.2018.2791504
Wu, 2018, Online geographical load balancing for energy-harvesting mobile edge computing, 1
Xiao, 2017, Qoe and power efficiency tradeoff for fog computing networks with fog node cooperation, 1
Xiao, 2019, Edge computing security: state of the art and challenges, Proc. IEEE, 107, 1608, 10.1109/JPROC.2019.2918437
Xu, 2017, Online learning for offloading and autoscaling in energy harvesting mobile edge computing, IEEE Trans. Cognit. Commun. Netw., 3, 361, 10.1109/TCCN.2017.2725277
Xu, 2019, A heuristic offloading method for deep learning edge services in 5g networks, IEEE Access, 7, 67734, 10.1109/ACCESS.2019.2918585
Yaqoob, 2016, Mobile ad hoc cloud: a survey, Wireless Commun. Mobile Comput., 16, 2572, 10.1002/wcm.2709
Yiqing, 2007, An improved pso algorithm for solving non-convex nlp/minlp problems with equality constraints, Comput. Chem. Eng., 31, 153, 10.1016/j.compchemeng.2006.05.016
You, 2017, Energy-efficient resource allocation for mobile-edge computation offloading, IEEE Trans. Wireless Commun., 16, 1397, 10.1109/TWC.2016.2633522
Yu, 2016, Mobile edge computing towards 5g: vision, recent progress, and open challenges, China Commun., 13, 89, 10.1109/CC.2016.7405725
Yu, 2018, A survey on the edge computing for the internet of things, IEEE Access, 6, 6900, 10.1109/ACCESS.2017.2778504
Zhang, 2018, Joint heterogeneous statistical-qos/qoe provisionings for edge-computing based wifi offloading over 5g mobile wireless networks, 1
Zhang, 2015, Offloading in mobile cloudlet systems with intermittent connectivity, IEEE Trans. Mobile Comput., 14, 2516, 10.1109/TMC.2015.2405539
Zhang, 2016, Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks, IEEE Access, 4, 5896, 10.1109/ACCESS.2016.2597169
Zhang, 2016, Energy-aware traffic offloading for green heterogeneous networks, IEEE J. Sel. Area. Commun., 34, 1116, 10.1109/JSAC.2016.2520244
Zhang, 2017, Optimal delay constrained offloading for vehicular edge computing networks, 1
Zhang, 2018, Energy management for multi-user mobile-edge computing systems with energy harvesting devices and qos constraints, 1
Zhang, 2018, Energy-delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices, IEEE Trans. Ind. Inf., 14, 4642, 10.1109/TII.2018.2843365
Zhang, 2018, Embedding virtual network functions with backup for reliable large-scale edge computing, 190
Zhang, 2018, 1
Zhang, 2019, Near-optimal and truthful online auction for computation offloading in green edge-computing systems, IEEE Trans. Mobile Comput., 1
Zhao, 2018, Qoe aware and cell capacity enhanced computation offloading for multi-server mobile edge computing systems with energy harvesting devices, 671
Zhao, 2018, Femos: fog-enabled multitier operations scheduling in dynamic wireless networks, IEEE Internet Things J., 5, 1169, 10.1109/JIOT.2018.2808280
Zhao, 2018, Uplink resource allocation in mobile edge computing-based heterogeneous networks with multi-band rf energy harvesting, 1
Zhao, 2019, Cycle oram: a practical protection for access pattern in untrusted storage, IEEE Access, 7, 26684, 10.1109/ACCESS.2019.2900304
Zhao, 2019, Edge computing and networking: a survey on infrastructures and applications, IEEE Access, 7, 101213, 10.1109/ACCESS.2019.2927538
Zheng, 2016, Stochastic computation offloading game for mobile cloud computing, 1
Zheng, 2019, Dynamic computation offloading for mobile cloud computing: a stochastic game-theoretic approach, IEEE Trans. Mobile Comput., 18, 771, 10.1109/TMC.2018.2847337
Zheng, 2019, Stochastic computation offloading and scheduling based on mobile edge computing, IEEE Access
Zhou, 2018, Computation rate maximization in uav-enabled wireless-powered mobile-edge computing systems, IEEE J. Sel. Area. Commun., 36, 1927, 10.1109/JSAC.2018.2864426
Zhou, 2019, Edge intelligence: paving the last mile of artificial intelligence with edge computing, Proc. IEEE, 1
Zhu, 2019, A hardware and software task-scheduling framework based on cpu+fpga heterogeneous architecture in edge computing, IEEE Access, 7, 148975, 10.1109/ACCESS.2019.2943179