MTMDAT-HADDOCK: High-throughput, protein complex structure modeling based on limited proteolysis and mass spectrometry

Springer Science and Business Media LLC - Tập 12 - Trang 1-11 - 2012
Janosch Hennig1,2,3, Sjoerd J de Vries4,5, Klaus DM Hennig6, Leah Randles7, Kylie J Walters7, Maria Sunnerhagen1, Alexandre MJJ Bonvin4
1Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
2Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
3Department Chemie, Technische Universität München, Garching, Germany
4Bijvoet Center for Biomolecular Research, Science Faculty, Utrecht University, Utrecht, The Netherlands
5Biomolecular Dynamics, Department of Physics T38, Technical University, München, Garching, Germany
6Department of Informatics, Gabriele-von-Bülow Gymnasium, Berlin, Germany
7Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA

Tóm tắt

MTMDAT is a program designed to facilitate analysis of mass spectrometry data of proteins and biomolecular complexes that are probed structurally by limited proteolysis. This approach can provide information about stable fragments of multidomain proteins, yield tertiary and quaternary structure data, and help determine the origin of stability changes at the amino acid residue level. Here, we introduce a pipeline between MTMDAT and HADDOCK, that facilitates protein-protein complex structure probing in a high-throughput and highly automated fashion. A new feature of MTMDAT allows for the direct identification of residues that are involved in complex formation by comparing the mass spectra of bound and unbound proteins after proteolysis. If 3D structures of the unbound components are available, this data can be used to define restraints for data-driven docking to calculate a model of the complex. We describe here a new implementation of MTMDAT, which includes a pipeline to the data-driven docking program HADDOCK, thus streamlining the entire procedure. This addition, together with usability improvements in MTMDAT, enables high-throughput modeling of protein complexes from mass spectrometry data. The algorithm has been validated by using the protein-protein interaction between the ubiquitin-binding domain of proteasome component Rpn13 and ubiquitin. The resulting structural model, based on restraints extracted by MTMDAT from limited proteolysis and modeled by HADDOCK, was compared to the published NMR structure, which relied on twelve unambiguous intermolecular NOE interactions. The MTMDAT-HADDOCK structure was of similar quality to structures generated using only chemical shift perturbation data derived by NMR titration experiments. The new MTMDAT-HADDOCK pipeline enables direct high-throughput modeling of protein complexes from mass spectrometry data. MTMDAT-HADDOCK can be downloaded from http://www.ifm.liu.se/chemistry/molbiotech/maria_sunnerhagens_group/mtmdat/ together with the manual and example files. The program is free for academic/non-commercial purposes.

Tài liệu tham khảo

Engen J, Wales T: Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 2006, 25: 158–170. 10.1002/mas.20064 Barrera N, Di Bartolo N, Booth P, Robinson C: Micelles protect membrane complexes from solution to vacuum. Science 2008, 321: 243–246. 10.1126/science.1159292 Ruotolo B, Benesch J, Sandercock A, Hyung S, Robinson C: Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 2008, 3: 1139–1152. 10.1038/nprot.2008.78 Young M, Tang N, Hempel J, Oshiro C, Taylor E, Kuntz I, Gibson B, Dollinger D: High throughput protein folding identification by using experimental constraints derived from intramolecular crosslinks and mass spectrometry. Proc Natl Acad Sci USA 2000, 97: 5802–5806. 10.1073/pnas.090099097 Back J, de Jong L, Muijsers A, de Koster C: Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 2003, 331: 303–313. 10.1016/S0022-2836(03)00721-6 Sinz A: Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. J Mass Spectrom 2003, 38: 1225–1237. 10.1002/jms.559 Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R: Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 2010, 9: 1634–1649. 10.1074/mcp.R000001-MCP201 Rappsilber J: The beginning of a beatiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 2011, 173: 530–540. 10.1016/j.jsb.2010.10.014 Maleknia S, Downard K: Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrom Rev 2001, 20: 388–401. 10.1002/mas.10013 Gerega S, Downard K: PROXIMO - a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS). Bioinformatics 2006, 22: 1702–1709. 10.1093/bioinformatics/btl178 Carey J: A systematic and general Proteolytic Method for defining structural and functional domains of proteins. Methods Enzymol 2000, 328: 499–514. Cohen S, Ferre-D’amare A, Burley S, Chait B: Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci 1995, 4: 1088–1099. Kriwacki R, Jiang W, Siuzdak G, Wright P: Probing Protein/Protein interactions with mass spectrometry and isotopic labeling: analysis of the p21/Cdk2 complex. J Amer Chem Soc 1996, 118: 5320–5321. 10.1021/ja960752m Lundqvist M, Andrésen C, Christensson S, Johansson S, Karlsson M, Broo K, Jonsson B: Proteolytic cleavage reveals interaction patterns between silica nanoparticles and two variants of human carbonic anhydrase. Langmuir 2005, 21(25):11903–11909. 10.1021/la050477u Hennig J, Bresell A, Sandberg M, Hennig K, Wahren-Herlenius M, Persson B, Sunnerhagen M: The fellowship of the RING: the RING-B-box Linker Region Interacts with the RING in TRIM21/Ro52, contains a native Autoantigenic Epitope in Sjögren Syndrome, and is an integral and conserved region in TRIM Proteins. J Mol Biol 2008, 377: 431–449. 10.1016/j.jmb.2008.01.005 Hennig J, Ottosson L, Andrésen C, Horvath L, Kuchroo V, Broo K, Wahren-Herlenius M, Sunnerhagen M: Structural organization and Zn2+-dependent subdomain interactions involving Autoantigenic Epitopes in the RING-B-box-Coiled-coil (RBCC) region of Ro52. J Biol Chem 2005, 280(39):33250–33261. 10.1074/jbc.M503066200 Wennerstrand P, Dametto P, Hennig J, Klingstedt T, Skoglund K, Appell M, Martensson LG: Structural characteristics determine the cause of the low enzyme activity of two thiopurine S-methyltransferase allelic variants: a biophysical characterization of TPMT∗2 and TPMT∗5. Biochemistry 2012, 51: 5912–5920. 10.1021/bi300377d Hennig J, Hennig K, Sunnerhagen M: MTMDAT: Automated analysis and visualization of mass spectrometry data for tertiary and quaternary structure probing of proteins. Bioinformatics 2008, 24(10):1310–1312. 10.1093/bioinformatics/btn116 Dominguez C, Boelens R, Bonvin A: HADDOCK: A Protein-Protein docking approach based on Biochemical or Biophysical information. J Amer Chem Soc 2003, 125: 1731–1737. 10.1021/ja026939x de Vries S, van Dijk A, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin A: HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 2007, 69: 726–733. 10.1002/prot.21723 de Vries S, van Dijk M, Bonvin A: The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 2010, 5: 883–897. 10.1038/nprot.2010.32 de Vries S, van Dijk A, Bonvin A: WHISCY: What information does surface conservation yield? Application to data-driven docking. Proteins 2006, 63: 479–489. 10.1002/prot.20842 de Vries S, Bonvin A: How proteins get in touch: interface prediction in the study of biomolecular complexes. Curr Protein Pept Sci 2008, 9: 394–406. 10.2174/138920308785132712 Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters K, Finley D, Dikic I: Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453: 481–488. 10.1038/nature06926 Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, Finley D, Dikic I, Walters K, Groll M: Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453: 548–552. 10.1038/nature06924 Hamazaki J, Iemura S, Natsume T, Yashiroda H, Tanaka K, Murata S: A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J 2006, 25: 4524–4536. 10.1038/sj.emboj.7601338 Yao T, Song L, Xu W, DeMartino G, Florens L, Swanson S, Washburn M, Conaway R, Conaway J, Coher R: Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006, 8: 994–1002. 10.1038/ncb1460 Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001, 98: 4569–4574. 10.1073/pnas.061034498 Gandhi T, Zhong J, Mathivanan SLK, Chandrika K, Mohan S, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke J, Parmigiani G, Schultz JJSB, Pandey A: Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 2006, 38: 285–293. 10.1038/ng1747 Qiu X, Ouyang S, Li C, Miao S, Wang L, Goldberg A: hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J 2006, 25: 5742–5753. 10.1038/sj.emboj.7601450 de Vries S, Bonvin A: CPORT: A Consensus interface predictor and its performance in prediction-driven docking with HADDOCK. Plos ONE 2011, 6: e17695. 10.1371/journal.pone.0017695 DeLano W: The PyMOL molecular graphics system. San Carlos, CA, USA: DeLano Scientific; 2002. Janin J, Henrick K, Moult J, Eyck L, Sternberg M, Vajda S, Vakser I, Wodak S: CAPRI: a critical assessment of predicted interactions. Proteins 2003, 52: 2–9. 10.1002/prot.10381 Reese M, Dötsch V: Fast mapping of protein-protein interfaces by NMR spectroscopy. J Am Chem Soc 2003, 125: 14250–14251. 10.1021/ja037640x Bonvin A, Rosato A, Wassenaar T: The eNMR platform for structural biology. J Struct Funct Genomics 2010, 11: 1–8. 10.1007/s10969-010-9084-9 Klapper M: The independent distribution of amino acid near neighbor pairs into polypeptides. Biochem Biophys Res Com 1977, 78: 1018–1024. 10.1016/0006-291X(77)90523-X Espinosa A, Hennig J, Ambrosi A, Anandapadmanaban M, Sandberg Abelius M, Sheng Y, Nyberg F, Arrowsmith C, Sunnerhagen M, Wahren-Herlenius M: Anti-Ro52 autoantibodies from patients with Sjögren’s syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface. J Biol Chem 2011, 286: 36478–36491. 10.1074/jbc.M111.241786 van Dijk M, Bonvin A: Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK’s performance. Nucleic Acids Res 2010, 38: 5634–5647. 10.1093/nar/gkq222 de Vries S, Melquiond A, Kastritis P, Karaca E, Bordogna A, van Dijk M, Rodrigues J, Bonvin A: Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. Proteins 2010, 78: 3242–3249. 10.1002/prot.22814 Babu M, vander Lee R, de Groot NS, Gsponer J: Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 2011, 21: 432–440. 10.1016/j.sbi.2011.03.011 Schneider R, Huang J, Yao M, Communie G, Ozenne V, Mollica L, Salmon L, Jensen M, Blackledge M: Towards a robust description of intrinsic protein disorder using nuclear magnetic resonance spectroscopy. Mol Biosyst 2012, 8: 58–68. 10.1039/c1mb05291h Rezaei-Ghaleh N, Blackledge M, Zweckstetter M: Intrinsically disordered proteins: from sequence and conformational properties toward druc discovery. Chembiochem 2012, 13: 930–950. 10.1002/cbic.201200093 Bibow S, Ozenne V, Biernat J, Blackledge M, Mandelkow E, Zweckstetter M: Structural impact of proline-directed pseudophosphorylation at AT8, AT100, and PHF1 epitopes on 441-residue tau. J Am Chem Soc 2011, 133: 15842–15845. 10.1021/ja205836j Andresen C, Helander S, Lemak A, Fares C, Csizmok V, Carlsson J, Penn L, Forman-Kay J, Arrowsmith C, Lundström P, Sunnerhagen M: Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res 2012, 40: 6353–6366. 10.1093/nar/gks263 Vijay-Kumar S, Bugg C, Cook W: Structure of ubiquitin refined at 1.8 Åresolution. J Mol Biol 1987, 194: 531–544. 10.1016/0022-2836(87)90679-6