Xiao, 2010, J. Electrochem. Soc., 157, A487, 10.1149/1.3314375
Mirzaeian, 2010, J. Power Sources, 195, 6817, 10.1016/j.jpowsour.2010.04.064
Yang, 2009, Electrochem. Commun., 11, 1127, 10.1016/j.elecom.2009.03.029
Tran, 2010, J. Power Sources, 195, 2057, 10.1016/j.jpowsour.2009.10.012
Ren, 2014, J. Phys. Chem. C, 118, 22412, 10.1021/jp505876z
Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010
R. P.
Hamlen
and T. B.Atwater, Metal/air batteries, in Handbook of batteries, ed. D. Linden and T. B. Reddy, McGraw-Hill, New York, 3rd edn, 2002, ch. 38
Xiao, 2011, Nano Lett., 11, 5071, 10.1021/nl203332e
Prabu, 2014, ACS Appl. Mater. Interfaces, 6, 16545, 10.1021/am5047476
Wang, 2013, Nano Energy, 2, 443, 10.1016/j.nanoen.2012.11.014
Catenacci, 2013, Energy Policy, 61, 403, 10.1016/j.enpol.2013.06.078
Girishkumar, 2010, J. Phys. Chem. Lett., 1, 2193, 10.1021/jz1005384
Caramia, 2014, Mater. Renew. Sustain. Energy, 3, 28, 10.1007/s40243-014-0028-3
Cheng, 2012, Chem. Soc. Rev., 41, 2172, 10.1039/c1cs15228a
Malkhandi, 2015, J. Phys. Chem. C, 119, 8004, 10.1021/jp512722x
K.
Kinoshita
, Electrochemical Oxygen Technology, Wiley, New York, 1992
Harting, 2012, J. Phys. Chem., 226, 151
Cao, 2012, Adv. Energy Mater., 2, 816, 10.1002/aenm.201200013
Neburchilov, 2010, J. Power Sources, 195, 1271, 10.1016/j.jpowsour.2009.08.100
Chen, 2014, Chem. Commun., 50, 557, 10.1039/C3CC47519K
Liu, 2013, J. Phys. Chem. C, 117, 14992, 10.1021/jp4044094
Liu, 2010, Angew. Chem., Int. Ed., 49, 2565, 10.1002/anie.200907289
Zhang, 2011, J. Phys. Chem. C, 115, 11170, 10.1021/jp201991j
Wang, 2011, J. Am. Chem. Soc., 133, 5182, 10.1021/ja1112904
Gong, 2009, Science, 323, 760, 10.1126/science.1168049
Tang, 2009, J. Am. Chem. Soc., 131, 13200, 10.1021/ja904595t
Parvez, 2012, ACS Nano, 6, 9541, 10.1021/nn302674k
Feng, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 155454, 10.1103/PhysRevB.85.155454
Subramanianm, 2009, J. Power Sources, 11, 2730
Luo, 2011, J. Mater. Chem., 21, 8039
Zheng, 2016, ChemElectroChem, 3, 2036, 10.1002/celc.201600130
Wang, 2009, Phys. Chem. Chem. Phys., 11, 2730, 10.1039/b818408a
Zhang, 2013, Nano Energy, 2, 88, 10.1016/j.nanoen.2012.07.021
Jiang, 2014, J. Mater. Chem. A, 2, 441, 10.1039/C3TA13832A
Wang, 2014, J. Mater. Chem. C, 2, 7396, 10.1039/C4TC00924J
Ci, 2010, Nat. Mater., 9, 430, 10.1038/nmat2711
Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j
Kim, 2014, Phys. Chem. Chem. Phys., 16, 14905, 10.1039/c4cp01406e
Kim, 2014, RCS Adv., 4, 16813
Panomsuwan, 2015, Phys. Chem. Chem. Phys., 17, 6227, 10.1039/C4CP05995F
Panomsuwan, 2015, J. Mater. Chem. A, 2, 18677, 10.1039/C4TA03010A
Ishizaki, 2014, J. Mater. Chem. A, 2, 10589, 10.1039/c4ta01577k
Kim, 2015, Phys. Chem. Chem. Phys., 17, 407, 10.1039/C4CP03868A
Ishizaki, 2016, Phys. Chem. Chem. Phys., 261, 156
Lee, 2015, J. Surf. Finish. Soc. Jpn., 66, 416, 10.4139/sfj.66.416
Li, 2007, Carbon, 45, 1686, 10.1016/j.carbon.2007.03.038
Li, 2016, RSC Adv., 6, 51864, 10.1039/C6RA02453J
Robertson, 1994, Diamond Relat. Mater., 3, 361, 10.1016/0925-9635(94)90186-4
Ferrari, 2000, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 14095, 10.1103/PhysRevB.61.14095
Dresselhaus, 2010, Nano Lett., 10, 751, 10.1021/nl904286r
Liu, 2016, J. Mater. Chem. A, 4, 1423, 10.1039/C5TA09066K
Suryani, 2011, J. Mater. Chem., 21, 7480, 10.1039/c1jm10439j
Peng, 2013, Sci. Rep., 3, 1765, 10.1038/srep01765
Pels, 1995, Carbon, 33, 1641, 10.1016/0008-6223(95)00154-6
Jaouen, 2009, ACS Appl. Mater. Interfaces, 1, 1623, 10.1021/am900219g
Deng, 2011, Chem. Mater., 23, 1188, 10.1021/cm102666r
Zhang, 2015, ACS Catal., 5, 7244, 10.1021/acscatal.5b01563
W.
Xing
, G.Yin and J.Zhang, Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, Amsterdam, 1st edn, 2014
Niwa, 2009, J. Power Sources, 187, 93, 10.1016/j.jpowsour.2008.10.064
Luo, 2011, J. Mater. Chem., 21, 8038, 10.1039/c1jm10845j
Okamoto, 2009, Appl. Surf. Sci., 256, 335, 10.1016/j.apsusc.2009.08.027
Panomsuwan, 2014, J. Mater. Chem. A, 2, 18677, 10.1039/C4TA03010A