Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction

Journal of Materials Chemistry A - Tập 5 Số 5 - Trang 2073-2082
Oi Lun Li1,2,3,4, Satoshi Chiba5,6,1,2,4, Yuta Wada5,6,1,2,4, Gasidit Panomsuwan7,8,6,9,10, Takahiro Ishizaki11,12,5,2,3
1Japan
2Koutou-ku
3SIT Research Laboratories, Shibaura Institute of Technology, 3-7-5 Toyosu, Koutou-ku, Tokyo, Japan
4Shibaura Institute of Technology
5Department of Material Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koutou-ku, Tokyo, Japan
6Faculty of Engineering
7Bangkok 10900
8Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
9NU-PPC Plasma Chemical Technology Laboratory, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
10Thailand
11Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 333-0012, Japan
12Department of Material Science and Engineering

Tóm tắt

N-doped carbon synthesized by a room temperature plasma process demonstrated the synergic effect of amino-N and graphitic-N towards advanced ORR activity.

Từ khóa


Tài liệu tham khảo

Xiao, 2010, J. Electrochem. Soc., 157, A487, 10.1149/1.3314375

Mirzaeian, 2010, J. Power Sources, 195, 6817, 10.1016/j.jpowsour.2010.04.064

Yang, 2009, Electrochem. Commun., 11, 1127, 10.1016/j.elecom.2009.03.029

Tran, 2010, J. Power Sources, 195, 2057, 10.1016/j.jpowsour.2009.10.012

Ren, 2014, J. Phys. Chem. C, 118, 22412, 10.1021/jp505876z

Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010

R. P. Hamlen and T. B.Atwater, Metal/air batteries, in Handbook of batteries, ed. D. Linden and T. B. Reddy, McGraw-Hill, New York, 3rd edn, 2002, ch. 38

Xiao, 2011, Nano Lett., 11, 5071, 10.1021/nl203332e

Prabu, 2014, ACS Appl. Mater. Interfaces, 6, 16545, 10.1021/am5047476

Wang, 2013, Nano Energy, 2, 443, 10.1016/j.nanoen.2012.11.014

Catenacci, 2013, Energy Policy, 61, 403, 10.1016/j.enpol.2013.06.078

Girishkumar, 2010, J. Phys. Chem. Lett., 1, 2193, 10.1021/jz1005384

Caramia, 2014, Mater. Renew. Sustain. Energy, 3, 28, 10.1007/s40243-014-0028-3

Cheng, 2012, Chem. Soc. Rev., 41, 2172, 10.1039/c1cs15228a

Malkhandi, 2015, J. Phys. Chem. C, 119, 8004, 10.1021/jp512722x

K. Kinoshita , Electrochemical Oxygen Technology, Wiley, New York, 1992

Harting, 2012, J. Phys. Chem., 226, 151

Cao, 2012, Adv. Energy Mater., 2, 816, 10.1002/aenm.201200013

Neburchilov, 2010, J. Power Sources, 195, 1271, 10.1016/j.jpowsour.2009.08.100

Chen, 2014, Chem. Commun., 50, 557, 10.1039/C3CC47519K

Liu, 2013, J. Phys. Chem. C, 117, 14992, 10.1021/jp4044094

Liu, 2010, Angew. Chem., Int. Ed., 49, 2565, 10.1002/anie.200907289

Zhang, 2011, J. Phys. Chem. C, 115, 11170, 10.1021/jp201991j

Wang, 2011, J. Am. Chem. Soc., 133, 5182, 10.1021/ja1112904

Gong, 2009, Science, 323, 760, 10.1126/science.1168049

Tang, 2009, J. Am. Chem. Soc., 131, 13200, 10.1021/ja904595t

Parvez, 2012, ACS Nano, 6, 9541, 10.1021/nn302674k

Feng, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 155454, 10.1103/PhysRevB.85.155454

Subramanianm, 2009, J. Power Sources, 11, 2730

Luo, 2011, J. Mater. Chem., 21, 8039

Zheng, 2016, ChemElectroChem, 3, 2036, 10.1002/celc.201600130

Wang, 2009, Phys. Chem. Chem. Phys., 11, 2730, 10.1039/b818408a

Zhang, 2013, Nano Energy, 2, 88, 10.1016/j.nanoen.2012.07.021

Jiang, 2014, J. Mater. Chem. A, 2, 441, 10.1039/C3TA13832A

Wang, 2014, J. Mater. Chem. C, 2, 7396, 10.1039/C4TC00924J

Ci, 2010, Nat. Mater., 9, 430, 10.1038/nmat2711

Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j

Kim, 2014, Phys. Chem. Chem. Phys., 16, 14905, 10.1039/c4cp01406e

Kim, 2014, RCS Adv., 4, 16813

Panomsuwan, 2015, Phys. Chem. Chem. Phys., 17, 6227, 10.1039/C4CP05995F

Panomsuwan, 2015, J. Mater. Chem. A, 2, 18677, 10.1039/C4TA03010A

Ishizaki, 2014, J. Mater. Chem. A, 2, 10589, 10.1039/c4ta01577k

Kim, 2015, Phys. Chem. Chem. Phys., 17, 407, 10.1039/C4CP03868A

Ishizaki, 2016, Phys. Chem. Chem. Phys., 261, 156

Lee, 2015, J. Surf. Finish. Soc. Jpn., 66, 416, 10.4139/sfj.66.416

Li, 2007, Carbon, 45, 1686, 10.1016/j.carbon.2007.03.038

Li, 2016, RSC Adv., 6, 51864, 10.1039/C6RA02453J

Robertson, 1994, Diamond Relat. Mater., 3, 361, 10.1016/0925-9635(94)90186-4

Ferrari, 2000, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 14095, 10.1103/PhysRevB.61.14095

Dresselhaus, 2010, Nano Lett., 10, 751, 10.1021/nl904286r

Liu, 2016, J. Mater. Chem. A, 4, 1423, 10.1039/C5TA09066K

Suryani, 2011, J. Mater. Chem., 21, 7480, 10.1039/c1jm10439j

Peng, 2013, Sci. Rep., 3, 1765, 10.1038/srep01765

Pels, 1995, Carbon, 33, 1641, 10.1016/0008-6223(95)00154-6

Jaouen, 2009, ACS Appl. Mater. Interfaces, 1, 1623, 10.1021/am900219g

Deng, 2011, Chem. Mater., 23, 1188, 10.1021/cm102666r

Zhang, 2015, ACS Catal., 5, 7244, 10.1021/acscatal.5b01563

W. Xing , G.Yin and J.Zhang, Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, Amsterdam, 1st edn, 2014

Niwa, 2009, J. Power Sources, 187, 93, 10.1016/j.jpowsour.2008.10.064

Luo, 2011, J. Mater. Chem., 21, 8038, 10.1039/c1jm10845j

Okamoto, 2009, Appl. Surf. Sci., 256, 335, 10.1016/j.apsusc.2009.08.027

Panomsuwan, 2014, J. Mater. Chem. A, 2, 18677, 10.1039/C4TA03010A