Dividing Quantum Channels
Tóm tắt
We investigate the possibility of dividing quantum channels into concatenations of other channels, thereby studying the semigroup structure of the set of completely-positive trace-preserving maps. We show the existence of ‘indivisible’ channels which can not be written as non-trivial products of other channels and study the set of ‘infinitesimal divisible’ channels which are elements of continuous completely positive evolutions. For qubit channels we obtain a complete characterization of the sets of indivisible and infinitesimal divisible channels. Moreover, we identify those channels which are solutions of time-dependent master equations for both positive and completely positive evolutions. For arbitrary finite dimension we prove a representation theorem for elements of continuous completely positive evolutions based on new results on determinants of quantum channels and Markovian approximations.
Từ khóa
Tài liệu tham khảo
Holevo, A.S.: Statistical Structure of Quantum Theory. Springer Lecture Notes in Physics, Berlin- Heidelberg-New York: Springer, 2001
Horn R.A. (1967). Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8: 219
Holevo A.S. (1986). Theor. Probab. Appl. 32: 560
Denisov L.V. (1988). Th. Prob. Appl. 33: 392
Jamiolkowski A. (1972). Rep. Math. Phys. 3: 275
Choi M.D. (1975). Lin. Alg. Appl. 10: 285
Kraus K. (1983). States, Effects and Operations. Springer, Berlin-Heidelberg-New York
Wolf M.M. and Perez-Garcia D. (2007). Phys. Rev. A 75: 012303
Lindbald G. (1976). Commun. Math. Phys. 48: 119
Gorini V., Kossakowski A. and Sudarshan E.C.G. (1976). J. Math. Phys. 17: 821
Davies E.B. (1980). Rep. Math. Phys. 17: 249
Perez-Garcia D., Wolf M.M., Petz D. and Ruskai M.B. (2006). J. Math. Phys. 47: 083506
Schmidt, W.M.: Diophantine Approximation. Lecture Notes in Math. 785, Berlin-Heidelberg-New York: Springer Verlag, 1980
Bhatia, R.: Matrix Analysis. Springer Graduate Texts in Mathematics 169, Berlin-Heidelberg-New York: Springer, 1997
Streater R.F. (1995). Statistical Dynamics. Imperial College Press, London
Wigner, E.P.: Gruppentheorie. Braunschweig: Vieweg 1931; Group Theory. London: Academic Press, 1959
Bargmann V. (1964). J. Math. Phys. 5: 862
Kadison R. (1965). Topology 3(supp. 2): 177
Buscemi F., D’Ariano G.M., Keyl M., Perinotti P. and Werner R. (2005). J. Math. Phys. 46: 082109
Nielsen M.A. and Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge
Uhlmann A. (1976). Rep. Math. Phys. 9: 273
Stoermer E. (1963). Acta Math. 110: 233
King C. and Ruskai M.B. (2001). IEEE Trans. Info. Theory 47: 192
Fujiwara A. and Algoet P. (1999). Phys. Rev. A 59: 3290
Ruskai M.B., Szarek S. and Werner E. (2002). Lin. Alg. Appl. 347: 159
Gorini V. and Sudarshan E.C.G. (1976). Commun. Math. Phys. 46: 43
Verstraete, F., Verschelde, H.: http://arxiv.org/list/quant-ph/0202124, 2002; F. Verstraete, J. Dehaene, B. De Moor.: Phys. Rev. A 64, 010101(R) (2001)
Vollbrecht K.G.H. and Werner R.F. (2000). J. Math. Phys. 41: 6772
Bacon D., Childs A.M., Chuang I.L., Kempe J., Leung D.W. and Zhou X. (2001). Phys. Rev. A 64: 062302
Eisert, J., Wolf, M.M.: http://arxiv.org/list/quant-ph/0505151, 2005; ‘Gaussian quantum channels’. In: Quantum Information with continuous variables of atoms and light, N. Cerf, G. Leuchs, E.S. Polzik (eds.) London: Imperial College Press, 2006
Verstraete F., Cirac J.I., Latorre J.I., Rico E. and Wolf M.M. (2005). Phys. Rev. Lett. 94: 140601
Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: arXiv: 0711.3172 (2007)