Dividing Quantum Channels

Michael M. Wolf1, J. Ignacio Cirac1
1Max-Planck-Institute for Quantum Optics, Garching, Germany

Tóm tắt

We investigate the possibility of dividing quantum channels into concatenations of other channels, thereby studying the semigroup structure of the set of completely-positive trace-preserving maps. We show the existence of ‘indivisible’ channels which can not be written as non-trivial products of other channels and study the set of ‘infinitesimal divisible’ channels which are elements of continuous completely positive evolutions. For qubit channels we obtain a complete characterization of the sets of indivisible and infinitesimal divisible channels. Moreover, we identify those channels which are solutions of time-dependent master equations for both positive and completely positive evolutions. For arbitrary finite dimension we prove a representation theorem for elements of continuous completely positive evolutions based on new results on determinants of quantum channels and Markovian approximations.

Từ khóa


Tài liệu tham khảo

Holevo, A.S.: Statistical Structure of Quantum Theory. Springer Lecture Notes in Physics, Berlin- Heidelberg-New York: Springer, 2001 Horn R.A. (1967). Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8: 219 Holevo A.S. (1986). Theor. Probab. Appl. 32: 560 Denisov L.V. (1988). Th. Prob. Appl. 33: 392 Jamiolkowski A. (1972). Rep. Math. Phys. 3: 275 Choi M.D. (1975). Lin. Alg. Appl. 10: 285 Kraus K. (1983). States, Effects and Operations. Springer, Berlin-Heidelberg-New York Wolf M.M. and Perez-Garcia D. (2007). Phys. Rev. A 75: 012303 Lindbald G. (1976). Commun. Math. Phys. 48: 119 Gorini V., Kossakowski A. and Sudarshan E.C.G. (1976). J. Math. Phys. 17: 821 Davies E.B. (1980). Rep. Math. Phys. 17: 249 Perez-Garcia D., Wolf M.M., Petz D. and Ruskai M.B. (2006). J. Math. Phys. 47: 083506 Schmidt, W.M.: Diophantine Approximation. Lecture Notes in Math. 785, Berlin-Heidelberg-New York: Springer Verlag, 1980 Bhatia, R.: Matrix Analysis. Springer Graduate Texts in Mathematics 169, Berlin-Heidelberg-New York: Springer, 1997 Streater R.F. (1995). Statistical Dynamics. Imperial College Press, London Wigner, E.P.: Gruppentheorie. Braunschweig: Vieweg 1931; Group Theory. London: Academic Press, 1959 Bargmann V. (1964). J. Math. Phys. 5: 862 Kadison R. (1965). Topology 3(supp. 2): 177 Buscemi F., D’Ariano G.M., Keyl M., Perinotti P. and Werner R. (2005). J. Math. Phys. 46: 082109 Nielsen M.A. and Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge Uhlmann A. (1976). Rep. Math. Phys. 9: 273 Stoermer E. (1963). Acta Math. 110: 233 King C. and Ruskai M.B. (2001). IEEE Trans. Info. Theory 47: 192 Fujiwara A. and Algoet P. (1999). Phys. Rev. A 59: 3290 Ruskai M.B., Szarek S. and Werner E. (2002). Lin. Alg. Appl. 347: 159 Gorini V. and Sudarshan E.C.G. (1976). Commun. Math. Phys. 46: 43 Verstraete, F., Verschelde, H.: http://arxiv.org/list/quant-ph/0202124, 2002; F. Verstraete, J. Dehaene, B. De Moor.: Phys. Rev. A 64, 010101(R) (2001) Vollbrecht K.G.H. and Werner R.F. (2000). J. Math. Phys. 41: 6772 Bacon D., Childs A.M., Chuang I.L., Kempe J., Leung D.W. and Zhou X. (2001). Phys. Rev. A 64: 062302 Eisert, J., Wolf, M.M.: http://arxiv.org/list/quant-ph/0505151, 2005; ‘Gaussian quantum channels’. In: Quantum Information with continuous variables of atoms and light, N. Cerf, G. Leuchs, E.S. Polzik (eds.) London: Imperial College Press, 2006 Verstraete F., Cirac J.I., Latorre J.I., Rico E. and Wolf M.M. (2005). Phys. Rev. Lett. 94: 140601 Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: arXiv: 0711.3172 (2007)