Ultra‐High Performance Amorphous Ga2O3 Photodetector Arrays for Solar‐Blind Imaging

Advanced Science - Tập 8 Số 20 - 2021
Yuan Qin1,2, Li‐Heng Li3, Zhaoan Yu1, Feihong Wu2, Danian Dong1, Wei Guo2, Zhongfang Zhang2, Jun‐Hui Yuan3, Kan‐Hao Xue3, Xiangshui Miao3, Shibing Long2
1Key Laboratory of Microelectronics Devices & Integration Technology Institute of Microelectronics of Chinese Academy of Sciences Beijing 100029 China
2School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
3Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

Tóm tắt

AbstractThe growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorphous (a‐) Ga2O3 via a post‐annealing process. The post‐annealed MSM a‐Ga2O3 SBPDs exhibit superhigh sensitivity of 733 A/W and high response speed of 18 ms, giving a high gain‐bandwidth product over 104 at 5 V. The SBPDs also show ultrahigh photo‐to‐dark current ratio of 3.9 × 107. Additionally, the PDs demonstrate super‐high specific detectivity of 3.9 × 1016 Jones owing to the extremely low noise down to 3.5 fW Hz−1/2, suggesting high signal‐to‐noise ratio. Underlying mechanism for such superior photoelectric properties is revealed by Kelvin probe force microscopy and first principles calculation. Furthermore, for the first time, a large‐scale, high‐uniformity 32 × 32 image sensor array based on the post‐annealed a‐Ga2O3 SBPDs is fabricated. Clear image of target object with high contrast can be obtained thanks to the high sensitivity and uniformity of the array. These results demonstrate the feasibility and practicality of the Ga2O3 PDs for applications in solar‐blind imaging, environmental monitoring, artificial intelligence and machine vision.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201204488

10.1002/adma.201503340

10.1002/adma.201604431

10.1038/nphoton.2013.191

10.1038/nenergy.2017.32

10.1002/aelm.201900389

10.1002/adma.201803422

10.1038/nature08813

10.1038/nature21050

10.1002/adfm.201806006

10.1002/adom.201800359

10.1002/adma.201500268

10.1021/acsphotonics.8b00174

10.1021/acsami.7b09812

10.1021/acsnano.8b07997

10.1143/APEX.1.011202

10.1021/acsphotonics.7b00359

10.1109/LED.2019.2908948

10.1002/adfm.201700264

10.1016/j.mtphys.2020.100226

Wang Y., 2020, ACS Appl. Electron. Mater.

10.1021/acsami.9b10626

10.1002/adom.201901833

10.1021/acsphotonics.9b00032

10.1021/acsphotonics.0c01579

10.1109/LED.2021.3050107

10.1109/LED.2021.3061509

Xu Y., 2020, IEEE Electron Device Lett., 41, 997

10.1063/1.123358

10.1364/OME.4.001067

10.1109/LPT.2018.2874725

10.1109/LED.2019.2932140

10.1063/1.5064471

10.1109/LED.2019.2932382

10.1002/adom.201700454

Huang L., 2017, IEEE Photonics J., 9, 1

10.1109/LPT.2019.2913286

10.1109/LPT.2018.2826560

10.1039/C8TC05251D

10.1016/j.jmst.2020.09.015

10.1002/adfm.201906040

10.1016/j.apsusc.2014.01.096

10.1063/1.3620986

10.1063/1.1728487

10.1063/1.1728818

10.1021/acsami.9b17409

10.1063/1.2800811

10.1021/am100277q

10.1063/1.4890524

10.1038/natrevmats.2016.100

10.1038/nnano.2013.219

10.1063/1.1394717

10.1063/1.4982354

10.1103/PhysRevB.85.081109

10.1103/PhysRevB.75.195212

10.1063/1.2800792

10.1002/adma.201702217

10.1002/adfm.201301006

10.1002/adom.201700638

10.1021/acsphotonics.9b01727