Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications

Journal of Membrane Science - Tập 544 - Trang 18-24 - 2017
Sébastien Balme1, Tianji Ma1, Emmanuel Balanzat2, Jean-Marc Janot1
1Institut Européen des Membranes, UMR5635, UM, ENSM, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
2Centre de recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 4, France

Tài liệu tham khảo

Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477 Jia, 2014, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renew. Sustain. Energy Rev., 31, 91, 10.1016/j.rser.2013.11.049 Yip, 2014, Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients, Environ. Sci. Technol., 48, 4925, 10.1021/es5005413 Helfer, 2014, Osmotic power with pressure retarded osmosis: heory, performance and trends - a review, J. Membr. Sci., 453, 337, 10.1016/j.memsci.2013.10.053 Gao, 2014, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc., 136, 12265, 10.1021/ja503692z Post, 2010, Towards implementation of reverse electrodialysis for power generation from salinity gradients, Desalin. Water Treat., 16, 182, 10.5004/dwt.2010.1093 Post, 2007, Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288, 218, 10.1016/j.memsci.2006.11.018 Hong, 2015, Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, J. Membr. Sci., 486, 71, 10.1016/j.memsci.2015.02.039 Turek, 2007, Renewable energy by reverse electrodialysis, Desalination, 205, 67, 10.1016/j.desal.2006.04.041 Vermaas, 2011, Power generation using profiled membranes in reverse electrodialysis, J. Membr. Sci., 385, 234, 10.1016/j.memsci.2011.09.043 Veerman, 2009, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327, 136, 10.1016/j.memsci.2008.11.015 Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876 Secchi, 2016, Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537, 210, 10.1038/nature19315 Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 536, 197, 10.1038/nature18593 Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623 Weber, 2017, Boron nitride nanoporous membranes with high surface charge by atomic layer deposition, ACS Appl. Mater. Interfaces, 9, 16669, 10.1021/acsami.7b02883 Picallo, 2013, Nanofluidic osmotic diodes: theory and molecular dynamics simulations, Phys. Rev. Lett., 111, 244501, 10.1103/PhysRevLett.111.244501 Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312 Zhang, 2015, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc., 137, 14765, 10.1021/jacs.5b09918 Apel, 2011, Effect of nanopore geometry on ion current rectification, Nanotechnology, 22, 175302, 10.1088/0957-4484/22/17/175302 Kovarik, 2009, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B, 113, 15960, 10.1021/jp9076189 Constantin, 2007, Poisson-Nernst -Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E, 76, 041202, 10.1103/PhysRevE.76.041202 Nguyen, 2010, Comparison of bipolar and unipolar ionic diodes, Nanotechnology, 21, 265301, 10.1088/0957-4484/21/26/265301 Liu, 2007, Asymmetric properties of ion transport in a charged conical nanopore, Phys. Rev. E, 75, 051201, 10.1103/PhysRevE.75.051201 Cervera, 2005, A poisson/nernst-Planck model for ionic transport through synthetic conical nanopores, Europhys. Lett., 71, 35, 10.1209/epl/i2005-10054-x Zhang, 2015, Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient, Chin. Chem. Lett., 26, 43, 10.1016/j.cclet.2014.08.001 Cao, 2011, Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition, Energy Environ. Sci., 4, 2259, 10.1039/c1ee01088c Cervera, 2011, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta, 56, 4504, 10.1016/j.electacta.2011.02.056 Apel, 2001, Track etching technique in membrane technology, Radiat. Meas., 34, 559, 10.1016/S1350-4487(01)00228-1 Ali, 2013, Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries, Chem. Commun., 49, 8770, 10.1039/c3cc45318a Ali, 2009, A pH-tunable Nanofluidic diode with a broad range of rectifying properties, Acs Nano, 3, 603, 10.1021/nn900039f Lepoitevin, 2015, Combining a sensor and pH-gated nanopore based on an avidin-biotin system, Chem. Commun., 51, 5994, 10.1039/C4CC10087E Apel, 2014, Accurate characterization of single track-etched, conical nanopores, Phys. Chem. Chem. Phys., 16, 15214, 10.1039/C4CP01686F Vlassiouk, 2007, Nanofluidic diode, Nano Lett., 7, 552, 10.1021/nl062924b Ali, 2010, layer-by-layer assembly of Polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment, J. Am. Chem. Soc., 132, 8338, 10.1021/ja101014y Perez-Mitta, 2017, Noncovalent Approach toward the Construction of Nanofluidic Diodes with pH-Reversible Rectifying Properties: Insights from Theory and Experiment, J. Phys. Chem. C, 121, 9070, 10.1021/acs.jpcc.7b01639 Zhao, 2017, Mimicking pH-gated ionic channels by polyelectrolyte complex confinement inside a single nanopore, Langmuir, 33, 3484, 10.1021/acs.langmuir.7b00377 Lepoitevin, 2016, Fast and reversible functionalization of a single nanopore based on layer-by-layer polyelectrolyte self-assembly for tuning current rectification and designing sensors, Rsc Adv., 6, 32228, 10.1039/C6RA03698H Pillai, 2009, Chitin and chitosan polymers: chemistry, solubility and fiber formation, Prog. Polym. Sci., 34, 641, 10.1016/j.progpolymsci.2009.04.001 Harrell, 2003, Synthetic single-nanopore and nanotube membranes, Anal. Chem., 75, 6861, 10.1021/ac034602n Apel, 2001, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At., 184, 337, 10.1016/S0168-583X(01)00722-4 Wharton, 2007, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors, Small, 3, 1424, 10.1002/smll.200700106 Siwy, 2004, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc., 126, 10850, 10.1021/ja047675c Cervera, 2006, Ionic conduction, rectification, and selectivity in single conical nanopores, J. Chem. Phys., 124, 104706, 10.1063/1.2179797 Gamage, 2007, Use of chitosan for the removal of metal ion contaminants and proteins from water, Food Chem., 104, 989, 10.1016/j.foodchem.2007.01.004 Actis, 2011, Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores, Langmuir, 27, 6528, 10.1021/la2005612 Feng, 2017, Bioinspired energy conversion in nanofluidics: a paradigm of material evolution, Adv. Mater., 10.1002/adma.201702773 Cao, 2017, Anomalous channel-length dependence in nanofluidic osmotic energy conversion, Adv. Funct. Mater., 27, 1604302, 10.1002/adfm.201604302 Kim, 2007, Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Phys. Rev. Lett., 99, 044501, 10.1103/PhysRevLett.99.044501