Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications
Tài liệu tham khảo
Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477
Jia, 2014, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renew. Sustain. Energy Rev., 31, 91, 10.1016/j.rser.2013.11.049
Yip, 2014, Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients, Environ. Sci. Technol., 48, 4925, 10.1021/es5005413
Helfer, 2014, Osmotic power with pressure retarded osmosis: heory, performance and trends - a review, J. Membr. Sci., 453, 337, 10.1016/j.memsci.2013.10.053
Gao, 2014, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc., 136, 12265, 10.1021/ja503692z
Post, 2010, Towards implementation of reverse electrodialysis for power generation from salinity gradients, Desalin. Water Treat., 16, 182, 10.5004/dwt.2010.1093
Post, 2007, Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288, 218, 10.1016/j.memsci.2006.11.018
Hong, 2015, Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, J. Membr. Sci., 486, 71, 10.1016/j.memsci.2015.02.039
Turek, 2007, Renewable energy by reverse electrodialysis, Desalination, 205, 67, 10.1016/j.desal.2006.04.041
Vermaas, 2011, Power generation using profiled membranes in reverse electrodialysis, J. Membr. Sci., 385, 234, 10.1016/j.memsci.2011.09.043
Veerman, 2009, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327, 136, 10.1016/j.memsci.2008.11.015
Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876
Secchi, 2016, Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537, 210, 10.1038/nature19315
Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 536, 197, 10.1038/nature18593
Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623
Weber, 2017, Boron nitride nanoporous membranes with high surface charge by atomic layer deposition, ACS Appl. Mater. Interfaces, 9, 16669, 10.1021/acsami.7b02883
Picallo, 2013, Nanofluidic osmotic diodes: theory and molecular dynamics simulations, Phys. Rev. Lett., 111, 244501, 10.1103/PhysRevLett.111.244501
Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312
Zhang, 2015, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc., 137, 14765, 10.1021/jacs.5b09918
Apel, 2011, Effect of nanopore geometry on ion current rectification, Nanotechnology, 22, 175302, 10.1088/0957-4484/22/17/175302
Kovarik, 2009, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B, 113, 15960, 10.1021/jp9076189
Constantin, 2007, Poisson-Nernst -Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E, 76, 041202, 10.1103/PhysRevE.76.041202
Nguyen, 2010, Comparison of bipolar and unipolar ionic diodes, Nanotechnology, 21, 265301, 10.1088/0957-4484/21/26/265301
Liu, 2007, Asymmetric properties of ion transport in a charged conical nanopore, Phys. Rev. E, 75, 051201, 10.1103/PhysRevE.75.051201
Cervera, 2005, A poisson/nernst-Planck model for ionic transport through synthetic conical nanopores, Europhys. Lett., 71, 35, 10.1209/epl/i2005-10054-x
Zhang, 2015, Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient, Chin. Chem. Lett., 26, 43, 10.1016/j.cclet.2014.08.001
Cao, 2011, Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition, Energy Environ. Sci., 4, 2259, 10.1039/c1ee01088c
Cervera, 2011, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta, 56, 4504, 10.1016/j.electacta.2011.02.056
Apel, 2001, Track etching technique in membrane technology, Radiat. Meas., 34, 559, 10.1016/S1350-4487(01)00228-1
Ali, 2013, Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries, Chem. Commun., 49, 8770, 10.1039/c3cc45318a
Ali, 2009, A pH-tunable Nanofluidic diode with a broad range of rectifying properties, Acs Nano, 3, 603, 10.1021/nn900039f
Lepoitevin, 2015, Combining a sensor and pH-gated nanopore based on an avidin-biotin system, Chem. Commun., 51, 5994, 10.1039/C4CC10087E
Apel, 2014, Accurate characterization of single track-etched, conical nanopores, Phys. Chem. Chem. Phys., 16, 15214, 10.1039/C4CP01686F
Vlassiouk, 2007, Nanofluidic diode, Nano Lett., 7, 552, 10.1021/nl062924b
Ali, 2010, layer-by-layer assembly of Polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment, J. Am. Chem. Soc., 132, 8338, 10.1021/ja101014y
Perez-Mitta, 2017, Noncovalent Approach toward the Construction of Nanofluidic Diodes with pH-Reversible Rectifying Properties: Insights from Theory and Experiment, J. Phys. Chem. C, 121, 9070, 10.1021/acs.jpcc.7b01639
Zhao, 2017, Mimicking pH-gated ionic channels by polyelectrolyte complex confinement inside a single nanopore, Langmuir, 33, 3484, 10.1021/acs.langmuir.7b00377
Lepoitevin, 2016, Fast and reversible functionalization of a single nanopore based on layer-by-layer polyelectrolyte self-assembly for tuning current rectification and designing sensors, Rsc Adv., 6, 32228, 10.1039/C6RA03698H
Pillai, 2009, Chitin and chitosan polymers: chemistry, solubility and fiber formation, Prog. Polym. Sci., 34, 641, 10.1016/j.progpolymsci.2009.04.001
Harrell, 2003, Synthetic single-nanopore and nanotube membranes, Anal. Chem., 75, 6861, 10.1021/ac034602n
Apel, 2001, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At., 184, 337, 10.1016/S0168-583X(01)00722-4
Wharton, 2007, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors, Small, 3, 1424, 10.1002/smll.200700106
Siwy, 2004, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc., 126, 10850, 10.1021/ja047675c
Cervera, 2006, Ionic conduction, rectification, and selectivity in single conical nanopores, J. Chem. Phys., 124, 104706, 10.1063/1.2179797
Gamage, 2007, Use of chitosan for the removal of metal ion contaminants and proteins from water, Food Chem., 104, 989, 10.1016/j.foodchem.2007.01.004
Actis, 2011, Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores, Langmuir, 27, 6528, 10.1021/la2005612
Feng, 2017, Bioinspired energy conversion in nanofluidics: a paradigm of material evolution, Adv. Mater., 10.1002/adma.201702773
Cao, 2017, Anomalous channel-length dependence in nanofluidic osmotic energy conversion, Adv. Funct. Mater., 27, 1604302, 10.1002/adfm.201604302
Kim, 2007, Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Phys. Rev. Lett., 99, 044501, 10.1103/PhysRevLett.99.044501