A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fiebig M, Lottermoser T, Meier D et al (2016) The evolution of multiferroics. Nat Rev Mater 1:16046. https://doi.org/10.1038/natrevmats.2016.46
Spaldin NA, Ramesh R (2019) Advances in magnetoelectric multiferroics. Nature Mater 18:203–212. https://doi.org/10.1038/s41563-018-0275-2
Wei Y, Gao C, Chen Z et al (2016) Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure. Sci Rep 61(6):1–8. https://doi.org/10.1038/srep30002
Wu C, Liu Q, Wang Y et al (2019) Room-temperature nonvolatile four-state memory based on multiferroic Sr3Co2Fe21.6O37.4. J Alloys Compd 779:115–120. https://doi.org/10.1016/J.JALLCOM.2018.11.256
Schmid H (1973) On a magnetoelectric classification of materials. Int J Magn 4:337–361
Ascher E, Rieder H, Schmid H, Stössel H (1966) Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J Appl Phys 37:1404–1405. https://doi.org/10.1063/1.1708493
Folen VJ, Rado GT, Stalder EW (1961) Anisotropy of the magnetoelectric effect in Cr2O3. Phys Rev Lett 6:607. https://doi.org/10.1103/PhysRevLett.6:607
Ma J, Hu J, Li Z, Nan CW (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087. https://doi.org/10.1002/ADMA.201003636
Suchtelen J (2014) Product properties: a new application of composite materials
Rivera JP (2011) On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161:165–180. https://doi.org/10.1080/00150199408213365
Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321–448. https://doi.org/10.1080/00018730902920554
Gareeva ZV, Zvezdin AK (2010) Pinning of magnetic domain walls in multiferroics. EPL Europhys Lett 91:47006. https://doi.org/10.1209/0295-5075/91/47006
Giraldo M, Meier QN, Bortis A et al (2021) Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order. Nat Commun 12:3093. https://doi.org/10.1038/s41467-021-22587-1
Xiao Z, Conte LR, Chen C et al (2018) Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion. Sci Rep 8:5207. https://doi.org/10.1038/s41598-018-23020-2
Qin H, Dreyer R, Woltersdorf G, Taniyama T, Van S (2021) Electric-field control of propagating spin waves by ferroelectric domain-wall motion in a multiferroic heterostructure. Adv Mater 33:2100646. https://doi.org/10.1002/adma.202100646
Shiratsuchi Y, Yoshida H, Kotani Y et al (2018) Antiferromagnetic domain wall creep driven by magnetoelectric effect. APL Mater 6:121104. https://doi.org/10.1063/1.5053928
Baryakhtar VG, L’Vov VA, Yablonskii DA (1983) Inhomogeneous magnetoelectric effect. JETP Lett 37:673–675
Daraktchiev M, Catalan G, Scott JF (2010) Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375:122–131. https://doi.org/10.1080/00150190802437969
Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205. https://doi.org/10.1103/PhysRevLett.95.057205
Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys Rev B 73:094434. https://doi.org/10.1103/PhysRevB.73.094434
Meier D, Maringer M, Lottermoser T et al (2009) Observation and coupling of domains in a spin-spiral multiferroic. Phys Rev Lett 102:107202. https://doi.org/10.1103/PhysRevLett.102.107202
Fiebig M, Lottermoser T, Fröhlich D et al (2002) Observation of coupled magnetic and electric domains. Nature 419:818–820. https://doi.org/10.1038/nature01077
Logginov AS, Meshkov GA, Nikolaev AV et al (2008) Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl Phys Lett 93:182510. https://doi.org/10.1063/1.3013569
Khokhlov NE, Khramova AE, Nikolaeva EP et al (2017) Electric-field-driven magnetic domain wall as a microscale magneto-optical shutter. Sci Rep 717:1–7. https://doi.org/10.1038/s41598-017-00365-8
Hämäläinen SJ, Brandl F, Franke KJA et al (2017) Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys Rev Appl 8:014020. https://doi.org/10.1103/PhysRevApplied.8.014020
Shah J, Kotnala RK (2012) Room temperature magnetoelectric coupling enhancement in Mg-substituted polycrystalline GdFeO3. Scr Mater 4:316–319. https://doi.org/10.1016/J.SCRIPTAMAT.2012.05.003
Jain Ruth DE, Rahman RAU, Dhamodaran M et al (2020) Room temperature magnetoelectric coupling in Fe-doped sodium bismuth titanate ceramics. J Alloys Compd 830:154679. https://doi.org/10.1016/J.JALLCOM.2020.154679
Jain Ruth DE, Rahman RAU, Sundarakannan B, Ramaswamy M (2019) Room temperature multiferroicity and magnetoelectric coupling in Na-deficient sodium bismuth titanate. Appl Phys Lett. https://doi.org/10.1063/1.5078575
Yahia G, Damay F, Chattopadhyay S et al (2017) Recognition of exchange striction as the origin of magnetoelectric coupling in multiferroics. Phys Rev B 95:184112. https://doi.org/10.1103/PhysRevB.95.184112
Sergienko IA, Şen C, Dagotto E (2006) Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. Phys Rev Lett 97:227204. https://doi.org/10.1103/PhysRevLett.97.227204
Ye M, Vanderbilt D (2015) Magnetic charges and magnetoelectricity in hexagonal rare-earth manganites and ferrites. Phys Rev B 92:035107. https://doi.org/10.1103/PhysRevB.92.035107
Lee N, Choi YJ, Ramazanoglu M et al (2011) Mechanism of exchange striction of ferroelectricity in multiferroic orthorhombic HoMnO3 single crystals. Phys Rev B 84:020101. https://doi.org/10.1103/PhysRevB.84.020101
Fisher ME, Selke W (1980) Infinitely many commensurate phases in a simple ising model. Phys Rev Lett 44:1502. https://doi.org/10.1103/PhysRevLett.44.1502
Mochizuki M, Furukawa N, Nagaosa N (2010) Spin model of magnetostrictions in multiferroic Mn perovskites. Phys Rev Lett 105:037205. https://doi.org/10.1103/PhysRevLett.105.037205
Muñoz A, Casáis MT, Alonso JA et al (2001) Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem 40:1020–1028. https://doi.org/10.1021/IC0011009
Lorenz B, Wang YQ, Chu CW (2007) Ferroelectricity in perovskite HoMnO3 and TbMnO3. Phys Rev B 76:104405. https://doi.org/10.1103/PhysRevB76:104405
Pomjakushin VY, Kenzelmann M, Dönni A et al (2009) Evidence for large electric polarization from collinear magnetism in TmMnO3. New J Phys 11:043019. https://doi.org/10.1088/1367-2630/11/4/043019
Kagomiya I, Kohn K, Uchiyama T (2011) Structure and ferroelectricity of RMn2O5. Ferroelectrics 280:131–143. https://doi.org/10.1080/00150190214799
Chattopadhyay S, Balédent V, Damay F et al (2016) Evidence of multiferroicity in NdMn2O5. Phys Rev B 93:104406. https://doi.org/10.1103/PhysRevB.93.104406
Xin C, Song B, Sun Z et al (2020) Intrinsic role of ↑↑↓↓ type magnetic structure on magnetoelectric coupling in Y2NiMnO6. Appl Phys Lett 116:242901. https://doi.org/10.1063/5.0009568
Noda Y, Kimura H, Fukunaga M et al (2008) Magnetic and ferroelectric properties of multiferroic RMn2O5. J Phys Condens Matter 20:434206. https://doi.org/10.1088/0953-8984/20/43/434206
Lee N, Vecchini C, Choi YJ et al (2013) Giant tunability of ferroelectric polarization in GdMn2O5. Phys Rev Lett 110:137203. https://doi.org/10.1103/PhysRevLett110:137203
Choi YJ, Yi HT, Lee S et al (2008) Ferroelectricity in an ising chain magnet. Phys Rev Lett 100:047601. https://doi.org/10.1103/PhysRevLett100:047601
Nagano A, Naka M, Nasu J, Ishihara S (2007) Electric polarization, magnetoelectric effect, and orbital state of a layered iron oxide with frustrated geometry. Phys Rev Lett 99:217202. https://doi.org/10.1103/PhysRevLett.99.217202
Fen JS, Xiang HJ (2016) Anisotropic symmetric exchange as a new mechanism for multiferroicity. Phys Rev B 93:174416. https://doi.org/10.1103/PhysRevB.93.174416
Giovannetti G, Kumar S, Khomskii D et al (2009) Multiferroicity in rare-earth nickelates RNiO3. Phys Rev Lett 103:156401. https://doi.org/10.1103/PhysRevLett.103.156401
Balédent V, Chattopadhyay S, Fertey P et al (2015) Evidence for room temperature electric polarization in RMn2O5 multiferroics. Phys Rev Lett 114:117601. https://doi.org/10.1103/PhysRevLett.114.117601
Dey K, Indra A, Mukherjee S et al (2019) Natural ferroelectric order near ambient temperature in the orthoferrite HoFeO3. Phys Rev B 100:214432. https://doi.org/10.1103/PhysRevB.100.214432
Juraschek DM, Fechner M, Balatsky AV, Spaldin NA (2017) Dynamical multiferroicity. Phys Rev Mater 1:014401. https://doi.org/10.1103/PhysRevMaterials.1.014401
Sivarajah P, Steinbacher A, Dastrup B et al (2019) THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime. J Appl Phys 125:213103. https://doi.org/10.1063/1.5083849
Tóth S, Wehinger B, Rolfs K et al (2016) Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2. Nat Commun 71(7):1–7. https://doi.org/10.1038/ncomms13547
Rovillain P, Cazayous M, Gallais Y et al (2010) Magnetoelectric excitations in multiferroic TbMnO3 by Raman scattering. Phys Rev B 81:054428. https://doi.org/10.1103/PhysRevB.81.054428
Senff D, Link P, Aliouane N et al (2008) Field dependence of magnetic correlations through the polarization flop transition in multiferroic TbMnO3: evidence for a magnetic memory effect. Phys Rev B 77:174419. https://doi.org/10.1103/PhysRevB.77.174419
Pimenov A, Mukhin AA, Ivanov VY et al (2006) (2006) Possible evidence for electromagnons in multiferroic manganites. Nat Phys 22(2):97–100. https://doi.org/10.1038/nphys212
Sushkov AB, Aguilar RV, Park S et al (2007) Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys Rev Lett 98:027202. https://doi.org/10.1103/PhysRevLett.98.027202
Kida N, Ikebe Y, Takahashi Y et al (2008) Electrically driven spin excitation in the ferroelectric magnet DyMnO3. Phys Rev B 78:104414. https://doi.org/10.1103/PhysRevB.78.104414
Aguilar RV, Mostovoy M, Sushkov AB et al (2009) Origin of electromagnon excitations in multiferroic RMnO3. Phys Rev Lett 102:047203. https://doi.org/10.1103/PhysRevLett.102.047203
Damascelli A, van der Marel D, Grüninger M et al (1998) Direct two-magnon optical absorption in α-NaV2O5: charged magnons. Phys Rev Lett 81:918. https://doi.org/10.1103/PhysRevLett.81.918
Senff D, Link P, Hradil K et al (2007) Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. Phys Rev Lett 98:137206. https://doi.org/10.1103/PhysRevLett.98.137206
Ustinov AB, Drozdovskii AV, Nikitin AA et al (2019) (2019) Dynamic electromagnonic crystal based on artificial multiferroic heterostructure. Commun Phys 21(2):1–7. https://doi.org/10.1038/s42005-019-0240-7
Khan P, Kanamaru M, Matsumoto K et al (2020) Ultrafast light-driven simultaneous excitation of coherent terahertz magnons and phonons in multiferroic BiFeO3. Phys Rev B 101:134413. https://doi.org/10.1103/PhysRevB.101.134413
Bossini D, Konishi K, Toyoda S et al (2018) Femtosecond activation of magnetoelectricity. Nat Phys 144(14):370–374. https://doi.org/10.1038/s41567-017-0036-1
Afanasiev D, Hortensius JR, Ivanov BA et al (2021) Ultrafast control of magnetic interactions via light-driven phonons. Nat Mater 205(20):607–611. https://doi.org/10.1038/s41563-021-00922-7
Das BK, Ramachandran B, Dixit A et al (2020) Emergence of two-magnon modes below spin-reorientation transition and phonon-magnon coupling in bulk BiFeO3: an infrared spectroscopic study. J Alloys Compd 832:154754. https://doi.org/10.1016/J.JALLCOM.2020.154754
Kamba S, Goian V, Skoromets V et al (2014) Strong spin-phonon coupling in infrared and Raman spectra of SrMnO3. Phys Rev B 89:064308. https://doi.org/10.1103/PhysRevB.89.064308
Wang N, Luo X, Han L et al (2020) Structure, performance, and application of BiFeO3 nanomaterials. Nano Micro Lett 12:81. https://doi.org/10.1007/s40820-020-00420-6
Bhoi K, Mohanty HS et al (2021) Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci Rep 111(11):1–17. https://doi.org/10.1038/s41598-021-82399-7
Laguta V, Kempa M, Bovtun V et al (2020) Magnetoelectric coupling in multiferroic Z-type hexaferrite revealed by electric-field-modulated magnetic resonance studies. J Mater Sci 5518(55):7624–7633. https://doi.org/10.1007/S10853-020-04563-0
Zhai K, Shang DS, Chai YS et al (2018) Room-temperature nonvolatile memory based on a single-phase multiferroic hexaferrite. Adv Funct Mater 28:1705771. https://doi.org/10.1002/ADFM.201705771
Long J, Ivanov MS, Khomchenko VA et al (2020) Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium (III) complex. Science 367:671–676. https://doi.org/10.1126/SCIENCE.AAZ2795
Algueró M, Cerdán PM, del Real RP et al (2020) Novel Aurivillius Bi4Ti3−2xNbxFexO12 phases with increasing magnetic-cation fraction until percolation: a novel approach for room temperature multiferroism. J Mater Chem C 8:12457–12469. https://doi.org/10.1039/D0TC03210G
Borisov P, Hochstrat A, Chen X et al (2005) Magnetoelectric switching of exchange bias. Phys Rev Lett 94:117203. https://doi.org/10.1103/PhysRevLett.94.117203
Ignatyeva DO, Kalish AN, Achanta VG, Song Y, Belotelov VI, Zvezdin AK (2018) Control of surface plasmon-polaritons in magnetoelectric heterostructures. J Light Technol 36:2660–2666. https://doi.org/10.1109/JLT.2018.2820805
Dowben PA et al (2018) Towards a strong spin-orbit coupling magnetoelectric transistor. IEEE J Explor Solid State Comput Devices Circuits 4:1–9. https://doi.org/10.1109/JXCDC.2018.2809640
Ji Y et al (2017) Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr2O3/heavy-metal W heterostructure. Appl Phys Lett 110:262401. https://doi.org/10.1063/1.4989680
Ye S (2022) Magnetoelectric switching energy of antiferromagnetic Cr2O3 used for spintronic logic devices and memory. Phys Status Solidi RRL 16:2100396. https://doi.org/10.1002/pssr.202100396
Zhao H, Kimura H, Cheng Z et al (2014) Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci Rep 41(4):1–8. https://doi.org/10.1038/srep05255
Paul J, Bhardwaj S, Sharma KK et al (2015) Room temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction method. J Alloys Compd 634:58–64. https://doi.org/10.1016/J.JALLCOM.2015.01.259
Mukherjee S, Roy A, Auluck S et al (2013) Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films. Phys Rev Lett 111:087601. https://doi.org/10.1103/PhysRevLett.111.087601
Wang W, Zhao J, Wang W et al (2013) Room-temperature multiferroic hexagonal LuFeO3 films. Phys Rev Lett 110:237601. https://doi.org/10.1103/PhysRevLett.110.237601
Zhang J, Xue W, Su T et al (2021) Nanoscale magnetization reversal by magnetoelectric coupling effect in Ga0.6Fe1.4O3 multiferroic thin films. ACS Appl Mater Interfaces 13:18194–18201. https://doi.org/10.1021/ACSAMI.0C21659
Ebnabbasi K, Mohebbi M, Vittoria C (2013) Strong magnetoelectric coupling in hexaferrites at room temperature. J Appl Phys 113:17C707. https://doi.org/10.1063/1.4794745
Wang L, Wang D, Cao Q et al (2012) Electric control of magnetism at room temperature. Sci Rep 21(2):1–5. https://doi.org/10.1038/srep00223
Rahman RAU, Ruth DEJ, Chakravarty S et al (2019) Room temperature magnetoelectric coupling and relaxor-like multiferroic nature in a biphase of cubic pyrochlore and spinel. J Appl Phys 126:044103. https://doi.org/10.1063/1.5081895
Wu J, Shi Z, Xu J et al (2012) Synthesis and room temperature four-state memory prototype of Sr3Co2Fe24O41 multiferroics. Appl Phys Lett 101:122903. https://doi.org/10.1063/1.4753973
Livesey KL (2011) Strain-mediated magnetoelectric coupling in magnetostrictive/piezoelectric heterostructures and resulting high-frequency effects. Phys Rev B 83:224420. https://doi.org/10.1103/PhysRevB.83.224420
Newacheck S et al (2022) On the magnetoelectric performance of multiferroic particulate composite materials. Smart Mater Struct 31:015022. https://doi.org/10.1088/1361-665X/ac383b
Rafique M, Herklotz A, Dörr K, Manzoor S (2017) Giant room temperature magnetoelectric response in strain controlled nanocomposites. Appl Phys Lett 110:202902. https://doi.org/10.1063/1.4983357
Park JH, Jang HM, Kim HS et al (2008) Strain-mediated magnetoelectric coupling in BaTiO3-Co nanocomposite thin films. Appl Phys Lett 92:062908. https://doi.org/10.1063/1.2842383
Begué A, Ciria M (2021) Strain-mediated giant magnetoelectric coupling in a crystalline multiferroic heterostructure. ACS Appl Mater Interfaces 13:6778–6784. https://doi.org/10.1021/ACSAMI.0C18777
Chaudhuri A, Mandal K (2015) Large magnetoelectric properties in CoFe2O4:BaTiO3 core–shell nanocomposites. J Magn Magn Mater 377:441–445. https://doi.org/10.1016/J.JMMM.2014.10.142
Nayek C, Sahoo KK, Murugavel P (2013) Magnetoelectric effect in La0.7Sr0.3MnO3–BaTiO3 core–shell nanocomposite. Mater Res Bull 48:1308–1311. https://doi.org/10.1016/J.MATERRESBULL.2012.12.043
Islam RA, Bedekar V, Poudyal N et al (2008) Magnetoelectric properties of core-shell particulate nanocomposites. J Appl Phys 104:104111. https://doi.org/10.1063/1.3013437
Zheng Z, Zhou P, Liu Y et al (2020) Strain effect on magnetoelectric coupling of epitaxial NFO/PZT heterostructure. J Alloys Compd 818:152871. https://doi.org/10.1016/J.JALLCOM.2019.152871
Bhoi K, Mohanty HS et al (2021) Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci Rep 11:1–17. https://doi.org/10.1038/s41598-021-82399-7
Ryu J, Priya S, Uchino K, Kim H-E (2002) Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram 82(8):107–119. https://doi.org/10.1023/A:1020599728432
Fang Z, Lu SG, Li F et al (2009) Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect. Appl Phys Lett 95:112903. https://doi.org/10.1063/1.3231614
Swain AB, Kumar SD, Subramanian V, Murugavel P (2020) Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications. Phys Rev Appl 13:024026. https://doi.org/10.1103/PhysRevApplied.13.024026
Palneedi H, Annapureddy V, Lee HY et al (2018) Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals. J Asian Ceram Soc 5:36–41. https://doi.org/10.1016/J.JASCER.2016.12.005
Zhai J, Dong S, Xing Z et al (2006) Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl Phys Lett 89:083507. https://doi.org/10.1063/1.2337996
Dong S, Zhai J, Li J, Viehland D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl Phys Lett 89:252904. https://doi.org/10.1063/1.2420772
Patil DR, Chai Y, Kambale RC et al (2013) Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl Phys Lett 102:062909. https://doi.org/10.1063/1.4792590
Greve H, Woltermann E, Quenzer HJ et al (2010) Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl Phys Lett 96:182501. https://doi.org/10.1063/1.3377908
Srinivasan G, Rasmussen ET, Gallegos J et al (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64:214408. https://doi.org/10.1103/PhysRevB.64.214408
Palneedi H, Maurya D, Kim G-Y et al (2015) Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Appl Phys Lett 107:012904. https://doi.org/10.1063/1.4926568
Jian L, Kumar AS, Lekha CSC et al (2019) Strong sub-resonance magnetoelectric coupling in PZT-NiFe2O4-PZT thin film composite. Nano-Struct Nano-Objects 18:100272. https://doi.org/10.1016/J.NANOSO.2019.100272
Cherifi RO, Ivanovskaya V, Phillips LC et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 134(13):345–351. https://doi.org/10.1038/nmat3870
Tian G, Zhang F, Yao J et al (2015) Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10:1025–1032. https://doi.org/10.1021/ACSNANO.5B06339
Lorenz M, Lazenka V, Schwinkendorf P et al (2014) Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: strain engineering and magnetoelectric coupling. J Phys D Appl Phys 47:135303. https://doi.org/10.1088/0022-3727/47/13/135303
Yarar E, Salzer S, Hrkac V et al (2016) Inverse bilayer magnetoelectric thin film sensor. Appl Phys Lett 109:022901. https://doi.org/10.1063/1.4958728
Gupta R, Shah J, Chaudhary S et al (2013) Magnetoelectric coupling-induced anisotropy in multiferroic nanocomposite (1 - X) BiFeO3-X BaTiO3. J Nanoparticle Res 15:2004. https://doi.org/10.1007/s11051-013-2004-8
Venkataiah G, Shirahata Y, Itoh M, Taniyama T (2011) Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field. Appl Phys Lett 99:102506. https://doi.org/10.1063/1.3628464
Lahtinen THE, van Dijken S (2013) Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Appl Phys Lett 102:112406. https://doi.org/10.1063/1.4795529
Geprägs S, Brandlmaier A, Opel M et al (2010) Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl Phys Lett 96:142509. https://doi.org/10.1063/1.3377923
Liu M, Lou J, Li S, Sun NX (2011) E-field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv Funct Mater 21:2593–2598. https://doi.org/10.1002/ADFM.201002485
Xu H, Feng M, Liu M et al (2018) Strain-mediated converse magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3–PbTiO3 multiferroic heterostructures. Cryst Growth Des 18:5934–5939. https://doi.org/10.1021/ACS.CGD.8B00702
Gao Y, Hu JM, Wu L, Nan CW (2015) Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/27/50/504005
Ghidini M, Dhesi SS, Mathur ND (2021) Nanoscale magnetoelectric effects revealed by imaging. J Magn Magn Mater 520:167016. https://doi.org/10.1016/J.JMMM.2020.167016
Motti F, Vinai G, Bonanni V et al (2020) Interplay between morphology and magnetoelectric coupling in Fe/PMN-PT multiferroic heterostructures studied by microscopy techniques. Phys Rev Mater 4:114418. https://doi.org/10.1103/PhysRevMaterials.4.114418
Ghidini M, Mansell R, Maccherozzi F et al (2019) Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat Mater 188(18):840–845. https://doi.org/10.1038/s41563-019-0374-8
Weisheit M, Fähler S, Marty A et al (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351. https://doi.org/10.1126/SCIENCE.1136629
Maruyama T, Shiota Y, Nozaki T et al (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotechnol 43(4):158–161. https://doi.org/10.1038/nnano.2008.406
Duan C-G, Velev JP, Sabirianov RF et al (2008) Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett 101:137201. https://doi.org/10.1103/PhysRevLett.101.137201
Zhang S (1999) Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys Rev Lett 83:640. https://doi.org/10.1103/PhysRevLett.83.640
Vaz CAF, Hoffman J, Segal Y et al (2010) Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys Rev Lett 104:127202. https://doi.org/10.1103/PhysRevLett.104.127202
Li W, Lee J, Demkov AA (2022) Extrinsic magnetoelectric effect at the BaTiO3/Ni interface. J Appl Phys 131:054101. https://doi.org/10.1063/5.0079880
Niranjan MK, Burton JD, Velev JP et al (2009) Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: an ab initio study. Appl Phys Lett 95:052501. https://doi.org/10.1063/1.3193679
Gupta R, Chaudhary S, Kotnala RK (2015) Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl Mater Interfaces 7:8472–8479. https://doi.org/10.1021/AM509055F
Stolichnov I, Riester SWE, Trodahl HJ et al (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 76(7):464–467. https://doi.org/10.1038/nmat2185
Cui B, Song C, Mao H et al (2015) Magnetoelectric coupling induced by interfacial orbital reconstruction. Adv Mater 27:6651–6656. https://doi.org/10.1002/ADMA.201503115
Duan CG, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett 97:047201. https://doi.org/10.1103/PHYSREVLETT.97.047201
Radaelli G, Petti D, Plekhanov E et al (2014) Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun 51(5):1–9. https://doi.org/10.1038/ncomms4404
Ji H, Wang YG, Li Y (2017) Electric modulation of magnetization at the Fe3O4/BaTiO3 interface. J Magn Magn Mater 442:242–246. https://doi.org/10.1016/J.JMMM.2017.05.091
Verissimo-Alves M, García-Fernández P, Bilc DI et al (2012) Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Phys Rev Lett 108:107003. https://doi.org/10.1103/PhysRevLett.108.107003
Zhou Z, Howe BM, Liu M et al (2015) Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. Sci Rep 51(5):1–7. https://doi.org/10.1038/srep07740
Kotnala RK, Gupta R, Chaudhary S (2015) Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl Phys Lett 107:082908. https://doi.org/10.1063/1.4929729
Lorenz M, Lazenka V, Schwinkendorf P et al (2016) Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv Mater Interfaces 3:1500822. https://doi.org/10.1002/ADMI.201500822
Lorenz M, Hirsch D, Patzig C et al (2017) Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl Mater Interfaces 9:18956–18965. https://doi.org/10.1021/ACSAMI.7B04084
Ong LH, Chew KH (2013) Intermixing and magnetoelectric coupling in ferroelectric/multiferroic superlattices. Ferroelectrics 450:7–15. https://doi.org/10.1080/00150193.2013.838137
Lee J, Sai N, Cai T et al (2010) Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B 81:144425. https://doi.org/10.1103/PhysRevB.81.144425
Wang H, He L, Wu X (2012) Interface enhancement of spin-polar phonon coupling in perovskite multiferroic superlattices. Europhys Lett 100:17005. https://doi.org/10.1209/0295-5075/100/17005
Martínez R, Kumar A, Palai R et al (2012) Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures. J Appl Phys 111:104104. https://doi.org/10.1063/1.4717727
Pradhan DK, Kumari S, Vasudevan RK et al (2018) Exploring the magnetoelectric coupling at the composite interfaces of FE/FM/FE heterostructures. Sci Rep 8:17381. https://doi.org/10.1038/s41598-018-35648-1
Quintana A, Zhang J, Isarain-Chávez E et al (2017) Voltage-induced coercivity reduction in nanoporous alloy films: a boost toward energy-efficient magnetic actuation. Adv Funct Mater 27:1701904. https://doi.org/10.1002/ADFM.201701904
Mishra AK, Darbandi AJ, Leufke PM et al (2013) Room temperature reversible tuning of magnetism of electrolyte-gated La0.75Sr0.25MnO3 nanoparticles. J Appl Phys 113:033913. https://doi.org/10.1063/1.4778918
Molinari A, Hahn H, Kruk R (2018) Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv Mater 30:1703908. https://doi.org/10.1002/ADMA.201703908
Zhao S, Zhou Z, Peng B et al (2017) Quantitative determination on ionic-liquid-gating control of interfacial magnetism. Adv Mater 29:1606478. https://doi.org/10.1002/ADMA.201606478
Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232. https://doi.org/10.1016/S0304-8853(98)00266-2
Wei L, Hu Z, Du G et al (2018) Full electric control of exchange bias at room temperature by resistive switching. Adv Mater 30:1801885. https://doi.org/10.1002/adma.201801885
Wu SM, Cybart SA, Yu P et al (2010) Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater 99(9):756–761. https://doi.org/10.1038/nmat2803
Laukhin V, Skumryev V, Martí X et al (2006) Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett 97:227201. https://doi.org/10.1103/PhysRevLett.97.227201
Skumryev V, Laukhin V, Fina I et al (2011) Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys Rev Lett 106:057206. https://doi.org/10.1103/PhysRevLett.106.057206
He X, Wang Y, Wu N et al (2010) Robust isothermal electric control of exchange bias at room temperature. Nat Mater 97(9):579–585. https://doi.org/10.1038/nmat2785
Béa H, Bibes M, Ott F et al (2008) Mechanisms of exchange bias with multiferroic BiFeO3. Phys Rev Lett 100:017204. https://doi.org/10.1103/PhysRevLett.100.017204
Prajapat CL, Bhatt H, Kumar Y et al (2020) Interface-induced magnetization and exchange bias in LSMO/BFO multiferroic heterostructures. ACS Appl Electron Mater 2:2629–2637. https://doi.org/10.1021/ACSAELM.0C00498
Wu SM, Cybart SA, Yi D et al (2013) Full electric control of exchange bias. Phys Rev Lett 110:067202. https://doi.org/10.1103/PhysRevLett.110.067202
Yi D, Yu P, Chen YC et al (2019) Tailoring magnetoelectric coupling in BiFeO3/La0.7Sr0.3MnO3 heterostructure through the interface engineering. Adv Mater 31:1806335. https://doi.org/10.1002/ADMA.201806335
Gupta PK, Ghosh S, Kumar S et al (2019) Room temperature exchange bias in antiferromagnetic composite BiFeO3-TbMnO3. J Appl Phys 126:243903. https://doi.org/10.1063/1.5109713
Gupta R, Shah J, Sharma C, Kotnala RK (2019) Interface assisted high magnetoresistance in BiFeO3/Fe97Si3 thin film at room temperature. J Alloys Compd 806:1377–1383. https://doi.org/10.1016/j.jallcom.2019.07.350
Allibe J, Fusil S, Bouzehouane K et al (2012) Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141–1145. https://doi.org/10.1021/NL202537Y
Martin LW, Chu Y-H, Zhan Q et al (2007) Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl Phys Lett 91:172513. https://doi.org/10.1063/1.2801695
Heron JT, Trassin M, Ashraf K et al (2011) Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett 107:217202. https://doi.org/10.1103/PhysRevLett.107.217202
Michel C, Moreau JM, Achenbach GD et al (1969) The atomic structure of BiFeO3. Solid State Commun 7:701–704. https://doi.org/10.1016/0038-1098(69)90597-3
Chu Y-H, Martin LW, Holcomb MB et al (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 76(7):478–482. https://doi.org/10.1038/nmat2184
Martin LW, Chu Y-H, Holcomb MB et al (2008) Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett 8:2050–2055. https://doi.org/10.1021/NL801391M
Yu P, Lee JS, Okamoto S et al (2010) Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures. Phys Rev Lett 105:027201. https://doi.org/10.1103/PhysRevLett.105.027201
Calderón MJ, Liang S, Yu R et al (2011) Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers. Phys Rev B 84:024422. https://doi.org/10.1103/PhysRevB.84.024422
Xuan HC, Cao QQ, Zhang CL et al (2010) Large exchange bias field in the Ni–Mn–Sn Heusler alloys with high content of Mn. Appl Phys Lett 96:202502. https://doi.org/10.1063/1.3428782
Yang YT, Gong YY, Ma SC et al (2015) Electric-field control of exchange bias field in a Mn50.1Ni39.3Sn10.6/piezoelectric laminate. J Alloys Compd 619:1–4. https://doi.org/10.1016/J.JALLCOM.2014.08.244
Giang DTH, Duc NH, Agnus G et al (2013) Electric field-controlled magnetization in exchange biased IrMn/Co/PZT multilayers. Adv Nat Sci Nanosci Nanotechnol 4:025017. https://doi.org/10.1088/2043-6262/4/2/025017
Lage E, Kirchhof C, Hrkac V et al (2012) Exchange biasing of magnetoelectric composites. Nat Mater 116(11):523–529. https://doi.org/10.1038/nmat3306
Gajek M, Bibes M, Fusil S et al (2007) Tunnel junctions with multiferroic barriers. Nat Mater 64(6):296–302. https://doi.org/10.1038/nmat1860
Lage E, Urs NO, Röbisch V et al (2014) Magnetic domain control and voltage response of exchange biased magnetoelectric composites. Appl Phys Lett 104:132405. https://doi.org/10.1063/1.4870511
Tatarenko AS, Srinivasan G, Bichurin MI (2006) Magnetoelectric microwave phase shifter. Appl Phys Lett 88:183507. https://doi.org/10.1063/1.2198111
Onate T-D, Wang Y, Long CJ, Takeuchi I (2011) Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl Phys Lett 99:203506. https://doi.org/10.1063/1.3662037
Gruverman A, Wu D, Lu H et al (2009) Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett 9:3539–3543. https://doi.org/10.1021/NL901754T
Manipatruni S, Nikonov DE, Lin C-C et al (2018) Scalable energy-efficient magnetoelectric spin–orbit logic. Nat 5657737(565):35–42. https://doi.org/10.1038/s41586-018-0770-2
Prasad B, Huang YL, Chopdekar RV et al (2020) Ultralow voltage manipulation of ferromagnetism. Adv Mater 32:2001943. https://doi.org/10.1002/adma.202001943
Salje EKH (2010) Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11:940–950. https://doi.org/10.1002/CPHC.200900943
Sharma P, Zhang QI, Sando D et al (2017) Nonvolatile ferroelectric domain wall memory. Sci Adv 3:e170051. https://doi.org/10.1126/sciadv.1700512
He Z, Angizi S, Fan D (2017) Current-induced dynamics of multiple Skyrmions with domain-wall pair and Skyrmion-based majority gate design. IEEE Magn Lett 8:1–5. https://doi.org/10.1109/LMAG.2017.2689721
Lin H, Gao Y, Wang X et al (2016) Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2016.2514982
Liu G, Cui X, Dong S (2010) A tunable ring-type magnetoelectric inductor. J Appl Phys 108:094106. https://doi.org/10.1063/1.3504218
Schneider JD, Domann JP, Panduranga MK et al (2019) Experimental demonstration and operating principles of a multiferroic antenna. J Appl Phys 126:224104. https://doi.org/10.1063/1.5126047
UstinovAB KBA, Srinivasan G (2014) Nonlinear multiferroic phase shifters for microwave frequencies. Appl Phys Lett 104:052911. https://doi.org/10.1063/1.4864315
Zhao Y, Li Y, Zhu S et al (2021) Voltage tunable low damping YIG/PMN-PT multiferroic heterostructure for low-power RF/microwave devices. J Phys D Appl Phys 54:245002. https://doi.org/10.1088/1361-6463/ABCE7C
Nikitin AO, Petrov RV, Khavanova MA, Tatarenko, Bichurin MI (2019) Modeling of magnetoelectric effect in multiferroic antenna. In: Photonics Electromagn Res Symp Spring (PIERS-Spring), pp 953–956. https://doi.org/10.1109/PIERSSpring46901.2019.9017230
Dong G, Zhou Z, Xue X et al (2017) Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites. ACS Appl Mater Interfaces 9:30733–30740. https://doi.org/10.1021/ACSAMI.7B06876
Wang L, Hu Z, Zhu Y et al (2020) Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range. ACS Appl Mater Interfaces 12:8855–8861. https://doi.org/10.1021/ACSAMI.9B20038
Ludwig A, Quandt E (2002) Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing. IEEE Trans Magn 38:2829–2831. https://doi.org/10.1109/TMAG.2002.802467
Song Y, Li Z, Sun Q et al (2012) Magnetic and electric property evolution of amorphous cobalt-rich alloys driven by field annealing. J Phys D Appl Phys 45:225001. https://doi.org/10.1088/0022-3727/45/22/225001
Nath D, Mandal SK, Nath A (2019) Polymer based LaFeO3-Poly (vinylidene fluoride) hybrid nanocomposites: enhanced magneto-electric coupling, magnetoimpedance and dielectric response. J Alloys Compd 806:968–975. https://doi.org/10.1016/j.jallcom.2019.07.299
Leung CM, Zhuang X, Xu J et al (2018) Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites. AIP Adv 8:055803. https://doi.org/10.1063/1.5006203
Li P, Wen Y, Liu P, Li X, Jia C (2010) A magnetoelectric energy harvester and management circuit for wireless sensor network. Sens Actuator A Phys 157:100–106. https://doi.org/10.1016/j.sna.2009.11.007
Dai X, Wen Y, Li P, Yang J, Zhang G (2009) Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite. Sens Actuator A Phys 156:350–358. https://doi.org/10.1016/j.sna.2009.10.002
Yang J, Wen Y, Li P et al (2013) A two-dimensional broadband vibration energy harvester using magnetoelectric transducer. Appl Phys Lett 103:243903. https://doi.org/10.1063/1.4847755
Lin Z, Chen J, Li X et al (2016) Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator. Appl Phys Lett 109:253903. https://doi.org/10.1063/1.4972188
Zaeimbashi M, Nasrollahpour M, Khalifa A et al (2021) Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat Commun 12:3141. https://doi.org/10.1038/s41467-021-23256-z
Zhang CL, Chen WQ (2010) A wideband magnetic energy harvester. Appl Phys Lett 96:123507. https://doi.org/10.1063/1.3360218
Bai X, Wen Y, Li P, Yang J, Peng X, Yue X (2014) Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling. Sens Actuator A Phys 209:78–86. https://doi.org/10.1016/j.sna.2013.12.022
Tan Z, Hong L, Fan Z et al (2019) Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect. NPG Asia Mater 11:20. https://doi.org/10.1038/s41427-019-0120-3
Paillard C, Bai X, Infante IC et al (2016) Photovoltaics with ferroelectrics: current status and beyond. Adv Mater 28:5153–5168. https://doi.org/10.1002/adma.201505215
Nechache R, Harnagea C, Li S et al (2015) Bandgap tuning of multiferroic oxide solar cells. Nature Photon 9:61–67. https://doi.org/10.1038/nphoton.2014.255
Sun Y, Liu X, Zeng J et al (2015) Photovoltaic effects in polarized polycrystalline BiFeO3 films. J Electron Mater 44:4207–4212. https://doi.org/10.1007/s11664-015-3918-y
Chakrabartty J, Nechache R, Harnagea C et al (2016) Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films. Nanotechnology 27:215402. https://doi.org/10.1088/0957-4484/27/21/215402
Guo K, Wang X, Zhang R et al (2021) Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices. Light Sci Appl 10:201. https://doi.org/10.1038/s41377-021-00644-0
Zhang G, Liu F, Gu T, Zhao Y, Li N, Yang W, Feng S (2017) Enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition. Adv Electron Mater 3:1600498. https://doi.org/10.1002/aelm.201600498
Wu Z, Zhang Y, Ma K et al (2014) Strong visible-light photovoltaic effect in multiferroic Pb(Fe1/2V1/2)O3 bulk ceramics. Phys Status Solidi RRL 8:36–39. https://doi.org/10.1002/pssr.201308259
Berenov A, Petrov P, Moffat B et al (2021) Pyroelectric and photovoltaic properties of Nb-doped PZT thin films. APL Mater 9:041108. https://doi.org/10.1063/5.0039593
Young SM, Zheng F, Rappe AM (2013) Prediction of a linear spin bulk photovoltaic effect in antiferromagnets. Phys Rev Lett 110:057201. https://doi.org/10.1103/PhysRevLett.110.057201
