A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications

Journal of Materials Science - Tập 57 Số 27 - Trang 12710-12737 - 2022
Rekha Gupta1, R. K. Kotnala2
1Department of Physics, Noida Institute of Engineering and Technology, Greater Noida, Affiliated to Dr. A. P. J. Abdul Kalam Technical University, Lucknow, UP, India
2CSIR-National Physical Laboratory, New Delhi, 110012, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fiebig M, Lottermoser T, Meier D et al (2016) The evolution of multiferroics. Nat Rev Mater 1:16046. https://doi.org/10.1038/natrevmats.2016.46

Spaldin NA, Ramesh R (2019) Advances in magnetoelectric multiferroics. Nature Mater 18:203–212. https://doi.org/10.1038/s41563-018-0275-2

Wei Y, Gao C, Chen Z et al (2016) Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure. Sci Rep 61(6):1–8. https://doi.org/10.1038/srep30002

Wu C, Liu Q, Wang Y et al (2019) Room-temperature nonvolatile four-state memory based on multiferroic Sr3Co2Fe21.6O37.4. J Alloys Compd 779:115–120. https://doi.org/10.1016/J.JALLCOM.2018.11.256

Schmid H (1973) On a magnetoelectric classification of materials. Int J Magn 4:337–361

Ascher E, Rieder H, Schmid H, Stössel H (1966) Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J Appl Phys 37:1404–1405. https://doi.org/10.1063/1.1708493

Folen VJ, Rado GT, Stalder EW (1961) Anisotropy of the magnetoelectric effect in Cr2O3. Phys Rev Lett 6:607. https://doi.org/10.1103/PhysRevLett.6:607

Ma J, Hu J, Li Z, Nan CW (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087. https://doi.org/10.1002/ADMA.201003636

Suchtelen J (2014) Product properties: a new application of composite materials

Rivera JP (2011) On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161:165–180. https://doi.org/10.1080/00150199408213365

Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321–448. https://doi.org/10.1080/00018730902920554

Gareeva ZV, Zvezdin AK (2010) Pinning of magnetic domain walls in multiferroics. EPL Europhys Lett 91:47006. https://doi.org/10.1209/0295-5075/91/47006

Giraldo M, Meier QN, Bortis A et al (2021) Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order. Nat Commun 12:3093. https://doi.org/10.1038/s41467-021-22587-1

Xiao Z, Conte LR, Chen C et al (2018) Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion. Sci Rep 8:5207. https://doi.org/10.1038/s41598-018-23020-2

Qin H, Dreyer R, Woltersdorf G, Taniyama T, Van S (2021) Electric-field control of propagating spin waves by ferroelectric domain-wall motion in a multiferroic heterostructure. Adv Mater 33:2100646. https://doi.org/10.1002/adma.202100646

Shiratsuchi Y, Yoshida H, Kotani Y et al (2018) Antiferromagnetic domain wall creep driven by magnetoelectric effect. APL Mater 6:121104. https://doi.org/10.1063/1.5053928

Baryakhtar VG, L’Vov VA, Yablonskii DA (1983) Inhomogeneous magnetoelectric effect. JETP Lett 37:673–675

Daraktchiev M, Catalan G, Scott JF (2010) Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375:122–131. https://doi.org/10.1080/00150190802437969

Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205. https://doi.org/10.1103/PhysRevLett.95.057205

Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys Rev B 73:094434. https://doi.org/10.1103/PhysRevB.73.094434

Meier D, Maringer M, Lottermoser T et al (2009) Observation and coupling of domains in a spin-spiral multiferroic. Phys Rev Lett 102:107202. https://doi.org/10.1103/PhysRevLett.102.107202

Fiebig M, Lottermoser T, Fröhlich D et al (2002) Observation of coupled magnetic and electric domains. Nature 419:818–820. https://doi.org/10.1038/nature01077

Logginov AS, Meshkov GA, Nikolaev AV et al (2008) Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl Phys Lett 93:182510. https://doi.org/10.1063/1.3013569

Khokhlov NE, Khramova AE, Nikolaeva EP et al (2017) Electric-field-driven magnetic domain wall as a microscale magneto-optical shutter. Sci Rep 717:1–7. https://doi.org/10.1038/s41598-017-00365-8

Hämäläinen SJ, Brandl F, Franke KJA et al (2017) Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys Rev Appl 8:014020. https://doi.org/10.1103/PhysRevApplied.8.014020

Shah J, Kotnala RK (2012) Room temperature magnetoelectric coupling enhancement in Mg-substituted polycrystalline GdFeO3. Scr Mater 4:316–319. https://doi.org/10.1016/J.SCRIPTAMAT.2012.05.003

Jain Ruth DE, Rahman RAU, Dhamodaran M et al (2020) Room temperature magnetoelectric coupling in Fe-doped sodium bismuth titanate ceramics. J Alloys Compd 830:154679. https://doi.org/10.1016/J.JALLCOM.2020.154679

Jain Ruth DE, Rahman RAU, Sundarakannan B, Ramaswamy M (2019) Room temperature multiferroicity and magnetoelectric coupling in Na-deficient sodium bismuth titanate. Appl Phys Lett. https://doi.org/10.1063/1.5078575

Yahia G, Damay F, Chattopadhyay S et al (2017) Recognition of exchange striction as the origin of magnetoelectric coupling in multiferroics. Phys Rev B 95:184112. https://doi.org/10.1103/PhysRevB.95.184112

Sergienko IA, Şen C, Dagotto E (2006) Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. Phys Rev Lett 97:227204. https://doi.org/10.1103/PhysRevLett.97.227204

Ye M, Vanderbilt D (2015) Magnetic charges and magnetoelectricity in hexagonal rare-earth manganites and ferrites. Phys Rev B 92:035107. https://doi.org/10.1103/PhysRevB.92.035107

Lee N, Choi YJ, Ramazanoglu M et al (2011) Mechanism of exchange striction of ferroelectricity in multiferroic orthorhombic HoMnO3 single crystals. Phys Rev B 84:020101. https://doi.org/10.1103/PhysRevB.84.020101

Fisher ME, Selke W (1980) Infinitely many commensurate phases in a simple ising model. Phys Rev Lett 44:1502. https://doi.org/10.1103/PhysRevLett.44.1502

Mochizuki M, Furukawa N, Nagaosa N (2010) Spin model of magnetostrictions in multiferroic Mn perovskites. Phys Rev Lett 105:037205. https://doi.org/10.1103/PhysRevLett.105.037205

Muñoz A, Casáis MT, Alonso JA et al (2001) Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem 40:1020–1028. https://doi.org/10.1021/IC0011009

Lorenz B, Wang YQ, Chu CW (2007) Ferroelectricity in perovskite HoMnO3 and TbMnO3. Phys Rev B 76:104405. https://doi.org/10.1103/PhysRevB76:104405

Pomjakushin VY, Kenzelmann M, Dönni A et al (2009) Evidence for large electric polarization from collinear magnetism in TmMnO3. New J Phys 11:043019. https://doi.org/10.1088/1367-2630/11/4/043019

Kagomiya I, Kohn K, Uchiyama T (2011) Structure and ferroelectricity of RMn2O5. Ferroelectrics 280:131–143. https://doi.org/10.1080/00150190214799

Chattopadhyay S, Balédent V, Damay F et al (2016) Evidence of multiferroicity in NdMn2O5. Phys Rev B 93:104406. https://doi.org/10.1103/PhysRevB.93.104406

Xin C, Song B, Sun Z et al (2020) Intrinsic role of ↑↑↓↓ type magnetic structure on magnetoelectric coupling in Y2NiMnO6. Appl Phys Lett 116:242901. https://doi.org/10.1063/5.0009568

Noda Y, Kimura H, Fukunaga M et al (2008) Magnetic and ferroelectric properties of multiferroic RMn2O5. J Phys Condens Matter 20:434206. https://doi.org/10.1088/0953-8984/20/43/434206

Lee N, Vecchini C, Choi YJ et al (2013) Giant tunability of ferroelectric polarization in GdMn2O5. Phys Rev Lett 110:137203. https://doi.org/10.1103/PhysRevLett110:137203

Choi YJ, Yi HT, Lee S et al (2008) Ferroelectricity in an ising chain magnet. Phys Rev Lett 100:047601. https://doi.org/10.1103/PhysRevLett100:047601

Nagano A, Naka M, Nasu J, Ishihara S (2007) Electric polarization, magnetoelectric effect, and orbital state of a layered iron oxide with frustrated geometry. Phys Rev Lett 99:217202. https://doi.org/10.1103/PhysRevLett.99.217202

Fen JS, Xiang HJ (2016) Anisotropic symmetric exchange as a new mechanism for multiferroicity. Phys Rev B 93:174416. https://doi.org/10.1103/PhysRevB.93.174416

Giovannetti G, Kumar S, Khomskii D et al (2009) Multiferroicity in rare-earth nickelates RNiO3. Phys Rev Lett 103:156401. https://doi.org/10.1103/PhysRevLett.103.156401

Balédent V, Chattopadhyay S, Fertey P et al (2015) Evidence for room temperature electric polarization in RMn2O5 multiferroics. Phys Rev Lett 114:117601. https://doi.org/10.1103/PhysRevLett.114.117601

Dey K, Indra A, Mukherjee S et al (2019) Natural ferroelectric order near ambient temperature in the orthoferrite HoFeO3. Phys Rev B 100:214432. https://doi.org/10.1103/PhysRevB.100.214432

Juraschek DM, Fechner M, Balatsky AV, Spaldin NA (2017) Dynamical multiferroicity. Phys Rev Mater 1:014401. https://doi.org/10.1103/PhysRevMaterials.1.014401

Sivarajah P, Steinbacher A, Dastrup B et al (2019) THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime. J Appl Phys 125:213103. https://doi.org/10.1063/1.5083849

Tóth S, Wehinger B, Rolfs K et al (2016) Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2. Nat Commun 71(7):1–7. https://doi.org/10.1038/ncomms13547

Rovillain P, Cazayous M, Gallais Y et al (2010) Magnetoelectric excitations in multiferroic TbMnO3 by Raman scattering. Phys Rev B 81:054428. https://doi.org/10.1103/PhysRevB.81.054428

Senff D, Link P, Aliouane N et al (2008) Field dependence of magnetic correlations through the polarization flop transition in multiferroic TbMnO3: evidence for a magnetic memory effect. Phys Rev B 77:174419. https://doi.org/10.1103/PhysRevB.77.174419

Pimenov A, Mukhin AA, Ivanov VY et al (2006) (2006) Possible evidence for electromagnons in multiferroic manganites. Nat Phys 22(2):97–100. https://doi.org/10.1038/nphys212

Sushkov AB, Aguilar RV, Park S et al (2007) Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys Rev Lett 98:027202. https://doi.org/10.1103/PhysRevLett.98.027202

Kida N, Ikebe Y, Takahashi Y et al (2008) Electrically driven spin excitation in the ferroelectric magnet DyMnO3. Phys Rev B 78:104414. https://doi.org/10.1103/PhysRevB.78.104414

Aguilar RV, Mostovoy M, Sushkov AB et al (2009) Origin of electromagnon excitations in multiferroic RMnO3. Phys Rev Lett 102:047203. https://doi.org/10.1103/PhysRevLett.102.047203

Damascelli A, van der Marel D, Grüninger M et al (1998) Direct two-magnon optical absorption in α-NaV2O5: charged magnons. Phys Rev Lett 81:918. https://doi.org/10.1103/PhysRevLett.81.918

Senff D, Link P, Hradil K et al (2007) Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. Phys Rev Lett 98:137206. https://doi.org/10.1103/PhysRevLett.98.137206

Ustinov AB, Drozdovskii AV, Nikitin AA et al (2019) (2019) Dynamic electromagnonic crystal based on artificial multiferroic heterostructure. Commun Phys 21(2):1–7. https://doi.org/10.1038/s42005-019-0240-7

Khan P, Kanamaru M, Matsumoto K et al (2020) Ultrafast light-driven simultaneous excitation of coherent terahertz magnons and phonons in multiferroic BiFeO3. Phys Rev B 101:134413. https://doi.org/10.1103/PhysRevB.101.134413

Bossini D, Konishi K, Toyoda S et al (2018) Femtosecond activation of magnetoelectricity. Nat Phys 144(14):370–374. https://doi.org/10.1038/s41567-017-0036-1

Afanasiev D, Hortensius JR, Ivanov BA et al (2021) Ultrafast control of magnetic interactions via light-driven phonons. Nat Mater 205(20):607–611. https://doi.org/10.1038/s41563-021-00922-7

Das BK, Ramachandran B, Dixit A et al (2020) Emergence of two-magnon modes below spin-reorientation transition and phonon-magnon coupling in bulk BiFeO3: an infrared spectroscopic study. J Alloys Compd 832:154754. https://doi.org/10.1016/J.JALLCOM.2020.154754

Kamba S, Goian V, Skoromets V et al (2014) Strong spin-phonon coupling in infrared and Raman spectra of SrMnO3. Phys Rev B 89:064308. https://doi.org/10.1103/PhysRevB.89.064308

Wang N, Luo X, Han L et al (2020) Structure, performance, and application of BiFeO3 nanomaterials. Nano Micro Lett 12:81. https://doi.org/10.1007/s40820-020-00420-6

Bhoi K, Mohanty HS et al (2021) Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci Rep 111(11):1–17. https://doi.org/10.1038/s41598-021-82399-7

Laguta V, Kempa M, Bovtun V et al (2020) Magnetoelectric coupling in multiferroic Z-type hexaferrite revealed by electric-field-modulated magnetic resonance studies. J Mater Sci 5518(55):7624–7633. https://doi.org/10.1007/S10853-020-04563-0

Zhai K, Shang DS, Chai YS et al (2018) Room-temperature nonvolatile memory based on a single-phase multiferroic hexaferrite. Adv Funct Mater 28:1705771. https://doi.org/10.1002/ADFM.201705771

Long J, Ivanov MS, Khomchenko VA et al (2020) Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium (III) complex. Science 367:671–676. https://doi.org/10.1126/SCIENCE.AAZ2795

Algueró M, Cerdán PM, del Real RP et al (2020) Novel Aurivillius Bi4Ti3−2xNbxFexO12 phases with increasing magnetic-cation fraction until percolation: a novel approach for room temperature multiferroism. J Mater Chem C 8:12457–12469. https://doi.org/10.1039/D0TC03210G

Borisov P, Hochstrat A, Chen X et al (2005) Magnetoelectric switching of exchange bias. Phys Rev Lett 94:117203. https://doi.org/10.1103/PhysRevLett.94.117203

Ignatyeva DO, Kalish AN, Achanta VG, Song Y, Belotelov VI, Zvezdin AK (2018) Control of surface plasmon-polaritons in magnetoelectric heterostructures. J Light Technol 36:2660–2666. https://doi.org/10.1109/JLT.2018.2820805

Dowben PA et al (2018) Towards a strong spin-orbit coupling magnetoelectric transistor. IEEE J Explor Solid State Comput Devices Circuits 4:1–9. https://doi.org/10.1109/JXCDC.2018.2809640

Ji Y et al (2017) Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr2O3/heavy-metal W heterostructure. Appl Phys Lett 110:262401. https://doi.org/10.1063/1.4989680

Ye S (2022) Magnetoelectric switching energy of antiferromagnetic Cr2O3 used for spintronic logic devices and memory. Phys Status Solidi RRL 16:2100396. https://doi.org/10.1002/pssr.202100396

Zhao H, Kimura H, Cheng Z et al (2014) Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci Rep 41(4):1–8. https://doi.org/10.1038/srep05255

Paul J, Bhardwaj S, Sharma KK et al (2015) Room temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction method. J Alloys Compd 634:58–64. https://doi.org/10.1016/J.JALLCOM.2015.01.259

Mukherjee S, Roy A, Auluck S et al (2013) Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films. Phys Rev Lett 111:087601. https://doi.org/10.1103/PhysRevLett.111.087601

Wang W, Zhao J, Wang W et al (2013) Room-temperature multiferroic hexagonal LuFeO3 films. Phys Rev Lett 110:237601. https://doi.org/10.1103/PhysRevLett.110.237601

Zhang J, Xue W, Su T et al (2021) Nanoscale magnetization reversal by magnetoelectric coupling effect in Ga0.6Fe1.4O3 multiferroic thin films. ACS Appl Mater Interfaces 13:18194–18201. https://doi.org/10.1021/ACSAMI.0C21659

Ebnabbasi K, Mohebbi M, Vittoria C (2013) Strong magnetoelectric coupling in hexaferrites at room temperature. J Appl Phys 113:17C707. https://doi.org/10.1063/1.4794745

Wang L, Wang D, Cao Q et al (2012) Electric control of magnetism at room temperature. Sci Rep 21(2):1–5. https://doi.org/10.1038/srep00223

Rahman RAU, Ruth DEJ, Chakravarty S et al (2019) Room temperature magnetoelectric coupling and relaxor-like multiferroic nature in a biphase of cubic pyrochlore and spinel. J Appl Phys 126:044103. https://doi.org/10.1063/1.5081895

Wu J, Shi Z, Xu J et al (2012) Synthesis and room temperature four-state memory prototype of Sr3Co2Fe24O41 multiferroics. Appl Phys Lett 101:122903. https://doi.org/10.1063/1.4753973

Livesey KL (2011) Strain-mediated magnetoelectric coupling in magnetostrictive/piezoelectric heterostructures and resulting high-frequency effects. Phys Rev B 83:224420. https://doi.org/10.1103/PhysRevB.83.224420

Newacheck S et al (2022) On the magnetoelectric performance of multiferroic particulate composite materials. Smart Mater Struct 31:015022. https://doi.org/10.1088/1361-665X/ac383b

Rafique M, Herklotz A, Dörr K, Manzoor S (2017) Giant room temperature magnetoelectric response in strain controlled nanocomposites. Appl Phys Lett 110:202902. https://doi.org/10.1063/1.4983357

Park JH, Jang HM, Kim HS et al (2008) Strain-mediated magnetoelectric coupling in BaTiO3-Co nanocomposite thin films. Appl Phys Lett 92:062908. https://doi.org/10.1063/1.2842383

Begué A, Ciria M (2021) Strain-mediated giant magnetoelectric coupling in a crystalline multiferroic heterostructure. ACS Appl Mater Interfaces 13:6778–6784. https://doi.org/10.1021/ACSAMI.0C18777

Chaudhuri A, Mandal K (2015) Large magnetoelectric properties in CoFe2O4:BaTiO3 core–shell nanocomposites. J Magn Magn Mater 377:441–445. https://doi.org/10.1016/J.JMMM.2014.10.142

Nayek C, Sahoo KK, Murugavel P (2013) Magnetoelectric effect in La0.7Sr0.3MnO3–BaTiO3 core–shell nanocomposite. Mater Res Bull 48:1308–1311. https://doi.org/10.1016/J.MATERRESBULL.2012.12.043

Islam RA, Bedekar V, Poudyal N et al (2008) Magnetoelectric properties of core-shell particulate nanocomposites. J Appl Phys 104:104111. https://doi.org/10.1063/1.3013437

Zheng Z, Zhou P, Liu Y et al (2020) Strain effect on magnetoelectric coupling of epitaxial NFO/PZT heterostructure. J Alloys Compd 818:152871. https://doi.org/10.1016/J.JALLCOM.2019.152871

Bhoi K, Mohanty HS et al (2021) Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci Rep 11:1–17. https://doi.org/10.1038/s41598-021-82399-7

Ryu J, Priya S, Uchino K, Kim H-E (2002) Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram 82(8):107–119. https://doi.org/10.1023/A:1020599728432

Fang Z, Lu SG, Li F et al (2009) Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect. Appl Phys Lett 95:112903. https://doi.org/10.1063/1.3231614

Swain AB, Kumar SD, Subramanian V, Murugavel P (2020) Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications. Phys Rev Appl 13:024026. https://doi.org/10.1103/PhysRevApplied.13.024026

Palneedi H, Annapureddy V, Lee HY et al (2018) Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals. J Asian Ceram Soc 5:36–41. https://doi.org/10.1016/J.JASCER.2016.12.005

Zhai J, Dong S, Xing Z et al (2006) Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl Phys Lett 89:083507. https://doi.org/10.1063/1.2337996

Dong S, Zhai J, Li J, Viehland D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl Phys Lett 89:252904. https://doi.org/10.1063/1.2420772

Patil DR, Chai Y, Kambale RC et al (2013) Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl Phys Lett 102:062909. https://doi.org/10.1063/1.4792590

Greve H, Woltermann E, Quenzer HJ et al (2010) Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl Phys Lett 96:182501. https://doi.org/10.1063/1.3377908

Srinivasan G, Rasmussen ET, Gallegos J et al (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64:214408. https://doi.org/10.1103/PhysRevB.64.214408

Palneedi H, Maurya D, Kim G-Y et al (2015) Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Appl Phys Lett 107:012904. https://doi.org/10.1063/1.4926568

Jian L, Kumar AS, Lekha CSC et al (2019) Strong sub-resonance magnetoelectric coupling in PZT-NiFe2O4-PZT thin film composite. Nano-Struct Nano-Objects 18:100272. https://doi.org/10.1016/J.NANOSO.2019.100272

Cherifi RO, Ivanovskaya V, Phillips LC et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 134(13):345–351. https://doi.org/10.1038/nmat3870

Tian G, Zhang F, Yao J et al (2015) Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10:1025–1032. https://doi.org/10.1021/ACSNANO.5B06339

Lorenz M, Lazenka V, Schwinkendorf P et al (2014) Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: strain engineering and magnetoelectric coupling. J Phys D Appl Phys 47:135303. https://doi.org/10.1088/0022-3727/47/13/135303

Yarar E, Salzer S, Hrkac V et al (2016) Inverse bilayer magnetoelectric thin film sensor. Appl Phys Lett 109:022901. https://doi.org/10.1063/1.4958728

Gupta R, Shah J, Chaudhary S et al (2013) Magnetoelectric coupling-induced anisotropy in multiferroic nanocomposite (1 - X) BiFeO3-X BaTiO3. J Nanoparticle Res 15:2004. https://doi.org/10.1007/s11051-013-2004-8

Venkataiah G, Shirahata Y, Itoh M, Taniyama T (2011) Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field. Appl Phys Lett 99:102506. https://doi.org/10.1063/1.3628464

Lahtinen THE, van Dijken S (2013) Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Appl Phys Lett 102:112406. https://doi.org/10.1063/1.4795529

Geprägs S, Brandlmaier A, Opel M et al (2010) Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl Phys Lett 96:142509. https://doi.org/10.1063/1.3377923

Liu M, Lou J, Li S, Sun NX (2011) E-field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv Funct Mater 21:2593–2598. https://doi.org/10.1002/ADFM.201002485

Xu H, Feng M, Liu M et al (2018) Strain-mediated converse magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3–PbTiO3 multiferroic heterostructures. Cryst Growth Des 18:5934–5939. https://doi.org/10.1021/ACS.CGD.8B00702

Gao Y, Hu JM, Wu L, Nan CW (2015) Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/27/50/504005

Ghidini M, Dhesi SS, Mathur ND (2021) Nanoscale magnetoelectric effects revealed by imaging. J Magn Magn Mater 520:167016. https://doi.org/10.1016/J.JMMM.2020.167016

Motti F, Vinai G, Bonanni V et al (2020) Interplay between morphology and magnetoelectric coupling in Fe/PMN-PT multiferroic heterostructures studied by microscopy techniques. Phys Rev Mater 4:114418. https://doi.org/10.1103/PhysRevMaterials.4.114418

Ghidini M, Mansell R, Maccherozzi F et al (2019) Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat Mater 188(18):840–845. https://doi.org/10.1038/s41563-019-0374-8

Weisheit M, Fähler S, Marty A et al (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351. https://doi.org/10.1126/SCIENCE.1136629

Maruyama T, Shiota Y, Nozaki T et al (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotechnol 43(4):158–161. https://doi.org/10.1038/nnano.2008.406

Duan C-G, Velev JP, Sabirianov RF et al (2008) Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett 101:137201. https://doi.org/10.1103/PhysRevLett.101.137201

Zhang S (1999) Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys Rev Lett 83:640. https://doi.org/10.1103/PhysRevLett.83.640

Vaz CAF, Hoffman J, Segal Y et al (2010) Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys Rev Lett 104:127202. https://doi.org/10.1103/PhysRevLett.104.127202

Li W, Lee J, Demkov AA (2022) Extrinsic magnetoelectric effect at the BaTiO3/Ni interface. J Appl Phys 131:054101. https://doi.org/10.1063/5.0079880

Niranjan MK, Burton JD, Velev JP et al (2009) Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: an ab initio study. Appl Phys Lett 95:052501. https://doi.org/10.1063/1.3193679

Gupta R, Chaudhary S, Kotnala RK (2015) Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl Mater Interfaces 7:8472–8479. https://doi.org/10.1021/AM509055F

Stolichnov I, Riester SWE, Trodahl HJ et al (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 76(7):464–467. https://doi.org/10.1038/nmat2185

Cui B, Song C, Mao H et al (2015) Magnetoelectric coupling induced by interfacial orbital reconstruction. Adv Mater 27:6651–6656. https://doi.org/10.1002/ADMA.201503115

Duan CG, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett 97:047201. https://doi.org/10.1103/PHYSREVLETT.97.047201

Radaelli G, Petti D, Plekhanov E et al (2014) Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun 51(5):1–9. https://doi.org/10.1038/ncomms4404

Ji H, Wang YG, Li Y (2017) Electric modulation of magnetization at the Fe3O4/BaTiO3 interface. J Magn Magn Mater 442:242–246. https://doi.org/10.1016/J.JMMM.2017.05.091

Verissimo-Alves M, García-Fernández P, Bilc DI et al (2012) Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Phys Rev Lett 108:107003. https://doi.org/10.1103/PhysRevLett.108.107003

Zhou Z, Howe BM, Liu M et al (2015) Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. Sci Rep 51(5):1–7. https://doi.org/10.1038/srep07740

Kotnala RK, Gupta R, Chaudhary S (2015) Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl Phys Lett 107:082908. https://doi.org/10.1063/1.4929729

Lorenz M, Lazenka V, Schwinkendorf P et al (2016) Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv Mater Interfaces 3:1500822. https://doi.org/10.1002/ADMI.201500822

Lorenz M, Hirsch D, Patzig C et al (2017) Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl Mater Interfaces 9:18956–18965. https://doi.org/10.1021/ACSAMI.7B04084

Ong LH, Chew KH (2013) Intermixing and magnetoelectric coupling in ferroelectric/multiferroic superlattices. Ferroelectrics 450:7–15. https://doi.org/10.1080/00150193.2013.838137

Lee J, Sai N, Cai T et al (2010) Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B 81:144425. https://doi.org/10.1103/PhysRevB.81.144425

Wang H, He L, Wu X (2012) Interface enhancement of spin-polar phonon coupling in perovskite multiferroic superlattices. Europhys Lett 100:17005. https://doi.org/10.1209/0295-5075/100/17005

Martínez R, Kumar A, Palai R et al (2012) Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures. J Appl Phys 111:104104. https://doi.org/10.1063/1.4717727

Pradhan DK, Kumari S, Vasudevan RK et al (2018) Exploring the magnetoelectric coupling at the composite interfaces of FE/FM/FE heterostructures. Sci Rep 8:17381. https://doi.org/10.1038/s41598-018-35648-1

Quintana A, Zhang J, Isarain-Chávez E et al (2017) Voltage-induced coercivity reduction in nanoporous alloy films: a boost toward energy-efficient magnetic actuation. Adv Funct Mater 27:1701904. https://doi.org/10.1002/ADFM.201701904

Mishra AK, Darbandi AJ, Leufke PM et al (2013) Room temperature reversible tuning of magnetism of electrolyte-gated La0.75Sr0.25MnO3 nanoparticles. J Appl Phys 113:033913. https://doi.org/10.1063/1.4778918

Molinari A, Hahn H, Kruk R (2018) Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv Mater 30:1703908. https://doi.org/10.1002/ADMA.201703908

Zhao S, Zhou Z, Peng B et al (2017) Quantitative determination on ionic-liquid-gating control of interfacial magnetism. Adv Mater 29:1606478. https://doi.org/10.1002/ADMA.201606478

Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232. https://doi.org/10.1016/S0304-8853(98)00266-2

Wei L, Hu Z, Du G et al (2018) Full electric control of exchange bias at room temperature by resistive switching. Adv Mater 30:1801885. https://doi.org/10.1002/adma.201801885

Wu SM, Cybart SA, Yu P et al (2010) Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater 99(9):756–761. https://doi.org/10.1038/nmat2803

Laukhin V, Skumryev V, Martí X et al (2006) Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett 97:227201. https://doi.org/10.1103/PhysRevLett.97.227201

Skumryev V, Laukhin V, Fina I et al (2011) Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys Rev Lett 106:057206. https://doi.org/10.1103/PhysRevLett.106.057206

He X, Wang Y, Wu N et al (2010) Robust isothermal electric control of exchange bias at room temperature. Nat Mater 97(9):579–585. https://doi.org/10.1038/nmat2785

Béa H, Bibes M, Ott F et al (2008) Mechanisms of exchange bias with multiferroic BiFeO3. Phys Rev Lett 100:017204. https://doi.org/10.1103/PhysRevLett.100.017204

Prajapat CL, Bhatt H, Kumar Y et al (2020) Interface-induced magnetization and exchange bias in LSMO/BFO multiferroic heterostructures. ACS Appl Electron Mater 2:2629–2637. https://doi.org/10.1021/ACSAELM.0C00498

Wu SM, Cybart SA, Yi D et al (2013) Full electric control of exchange bias. Phys Rev Lett 110:067202. https://doi.org/10.1103/PhysRevLett.110.067202

Yi D, Yu P, Chen YC et al (2019) Tailoring magnetoelectric coupling in BiFeO3/La0.7Sr0.3MnO3 heterostructure through the interface engineering. Adv Mater 31:1806335. https://doi.org/10.1002/ADMA.201806335

Gupta PK, Ghosh S, Kumar S et al (2019) Room temperature exchange bias in antiferromagnetic composite BiFeO3-TbMnO3. J Appl Phys 126:243903. https://doi.org/10.1063/1.5109713

Gupta R, Shah J, Sharma C, Kotnala RK (2019) Interface assisted high magnetoresistance in BiFeO3/Fe97Si3 thin film at room temperature. J Alloys Compd 806:1377–1383. https://doi.org/10.1016/j.jallcom.2019.07.350

Allibe J, Fusil S, Bouzehouane K et al (2012) Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141–1145. https://doi.org/10.1021/NL202537Y

Martin LW, Chu Y-H, Zhan Q et al (2007) Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl Phys Lett 91:172513. https://doi.org/10.1063/1.2801695

Heron JT, Trassin M, Ashraf K et al (2011) Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett 107:217202. https://doi.org/10.1103/PhysRevLett.107.217202

Michel C, Moreau JM, Achenbach GD et al (1969) The atomic structure of BiFeO3. Solid State Commun 7:701–704. https://doi.org/10.1016/0038-1098(69)90597-3

Chu Y-H, Martin LW, Holcomb MB et al (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 76(7):478–482. https://doi.org/10.1038/nmat2184

Martin LW, Chu Y-H, Holcomb MB et al (2008) Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett 8:2050–2055. https://doi.org/10.1021/NL801391M

Yu P, Lee JS, Okamoto S et al (2010) Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures. Phys Rev Lett 105:027201. https://doi.org/10.1103/PhysRevLett.105.027201

Calderón MJ, Liang S, Yu R et al (2011) Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers. Phys Rev B 84:024422. https://doi.org/10.1103/PhysRevB.84.024422

Xuan HC, Cao QQ, Zhang CL et al (2010) Large exchange bias field in the Ni–Mn–Sn Heusler alloys with high content of Mn. Appl Phys Lett 96:202502. https://doi.org/10.1063/1.3428782

Yang YT, Gong YY, Ma SC et al (2015) Electric-field control of exchange bias field in a Mn50.1Ni39.3Sn10.6/piezoelectric laminate. J Alloys Compd 619:1–4. https://doi.org/10.1016/J.JALLCOM.2014.08.244

Giang DTH, Duc NH, Agnus G et al (2013) Electric field-controlled magnetization in exchange biased IrMn/Co/PZT multilayers. Adv Nat Sci Nanosci Nanotechnol 4:025017. https://doi.org/10.1088/2043-6262/4/2/025017

Lage E, Kirchhof C, Hrkac V et al (2012) Exchange biasing of magnetoelectric composites. Nat Mater 116(11):523–529. https://doi.org/10.1038/nmat3306

Gajek M, Bibes M, Fusil S et al (2007) Tunnel junctions with multiferroic barriers. Nat Mater 64(6):296–302. https://doi.org/10.1038/nmat1860

Lage E, Urs NO, Röbisch V et al (2014) Magnetic domain control and voltage response of exchange biased magnetoelectric composites. Appl Phys Lett 104:132405. https://doi.org/10.1063/1.4870511

Tatarenko AS, Srinivasan G, Bichurin MI (2006) Magnetoelectric microwave phase shifter. Appl Phys Lett 88:183507. https://doi.org/10.1063/1.2198111

Onate T-D, Wang Y, Long CJ, Takeuchi I (2011) Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl Phys Lett 99:203506. https://doi.org/10.1063/1.3662037

Gruverman A, Wu D, Lu H et al (2009) Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett 9:3539–3543. https://doi.org/10.1021/NL901754T

Manipatruni S, Nikonov DE, Lin C-C et al (2018) Scalable energy-efficient magnetoelectric spin–orbit logic. Nat 5657737(565):35–42. https://doi.org/10.1038/s41586-018-0770-2

Prasad B, Huang YL, Chopdekar RV et al (2020) Ultralow voltage manipulation of ferromagnetism. Adv Mater 32:2001943. https://doi.org/10.1002/adma.202001943

Salje EKH (2010) Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11:940–950. https://doi.org/10.1002/CPHC.200900943

Sharma P, Zhang QI, Sando D et al (2017) Nonvolatile ferroelectric domain wall memory. Sci Adv 3:e170051. https://doi.org/10.1126/sciadv.1700512

He Z, Angizi S, Fan D (2017) Current-induced dynamics of multiple Skyrmions with domain-wall pair and Skyrmion-based majority gate design. IEEE Magn Lett 8:1–5. https://doi.org/10.1109/LMAG.2017.2689721

Lin H, Gao Y, Wang X et al (2016) Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2016.2514982

Liu G, Cui X, Dong S (2010) A tunable ring-type magnetoelectric inductor. J Appl Phys 108:094106. https://doi.org/10.1063/1.3504218

Schneider JD, Domann JP, Panduranga MK et al (2019) Experimental demonstration and operating principles of a multiferroic antenna. J Appl Phys 126:224104. https://doi.org/10.1063/1.5126047

UstinovAB KBA, Srinivasan G (2014) Nonlinear multiferroic phase shifters for microwave frequencies. Appl Phys Lett 104:052911. https://doi.org/10.1063/1.4864315

Zhao Y, Li Y, Zhu S et al (2021) Voltage tunable low damping YIG/PMN-PT multiferroic heterostructure for low-power RF/microwave devices. J Phys D Appl Phys 54:245002. https://doi.org/10.1088/1361-6463/ABCE7C

Nikitin AO, Petrov RV, Khavanova MA, Tatarenko, Bichurin MI (2019) Modeling of magnetoelectric effect in multiferroic antenna. In: Photonics Electromagn Res Symp Spring (PIERS-Spring), pp 953–956. https://doi.org/10.1109/PIERSSpring46901.2019.9017230

Dong G, Zhou Z, Xue X et al (2017) Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites. ACS Appl Mater Interfaces 9:30733–30740. https://doi.org/10.1021/ACSAMI.7B06876

Wang L, Hu Z, Zhu Y et al (2020) Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range. ACS Appl Mater Interfaces 12:8855–8861. https://doi.org/10.1021/ACSAMI.9B20038

Ludwig A, Quandt E (2002) Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing. IEEE Trans Magn 38:2829–2831. https://doi.org/10.1109/TMAG.2002.802467

Song Y, Li Z, Sun Q et al (2012) Magnetic and electric property evolution of amorphous cobalt-rich alloys driven by field annealing. J Phys D Appl Phys 45:225001. https://doi.org/10.1088/0022-3727/45/22/225001

Nath D, Mandal SK, Nath A (2019) Polymer based LaFeO3-Poly (vinylidene fluoride) hybrid nanocomposites: enhanced magneto-electric coupling, magnetoimpedance and dielectric response. J Alloys Compd 806:968–975. https://doi.org/10.1016/j.jallcom.2019.07.299

Leung CM, Zhuang X, Xu J et al (2018) Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites. AIP Adv 8:055803. https://doi.org/10.1063/1.5006203

Li P, Wen Y, Liu P, Li X, Jia C (2010) A magnetoelectric energy harvester and management circuit for wireless sensor network. Sens Actuator A Phys 157:100–106. https://doi.org/10.1016/j.sna.2009.11.007

Dai X, Wen Y, Li P, Yang J, Zhang G (2009) Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite. Sens Actuator A Phys 156:350–358. https://doi.org/10.1016/j.sna.2009.10.002

Yang J, Wen Y, Li P et al (2013) A two-dimensional broadband vibration energy harvester using magnetoelectric transducer. Appl Phys Lett 103:243903. https://doi.org/10.1063/1.4847755

Lin Z, Chen J, Li X et al (2016) Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator. Appl Phys Lett 109:253903. https://doi.org/10.1063/1.4972188

Zaeimbashi M, Nasrollahpour M, Khalifa A et al (2021) Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat Commun 12:3141. https://doi.org/10.1038/s41467-021-23256-z

Zhang CL, Chen WQ (2010) A wideband magnetic energy harvester. Appl Phys Lett 96:123507. https://doi.org/10.1063/1.3360218

Bai X, Wen Y, Li P, Yang J, Peng X, Yue X (2014) Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling. Sens Actuator A Phys 209:78–86. https://doi.org/10.1016/j.sna.2013.12.022

Tan Z, Hong L, Fan Z et al (2019) Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect. NPG Asia Mater 11:20. https://doi.org/10.1038/s41427-019-0120-3

Paillard C, Bai X, Infante IC et al (2016) Photovoltaics with ferroelectrics: current status and beyond. Adv Mater 28:5153–5168. https://doi.org/10.1002/adma.201505215

Nechache R, Harnagea C, Li S et al (2015) Bandgap tuning of multiferroic oxide solar cells. Nature Photon 9:61–67. https://doi.org/10.1038/nphoton.2014.255

Sun Y, Liu X, Zeng J et al (2015) Photovoltaic effects in polarized polycrystalline BiFeO3 films. J Electron Mater 44:4207–4212. https://doi.org/10.1007/s11664-015-3918-y

Chakrabartty J, Nechache R, Harnagea C et al (2016) Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films. Nanotechnology 27:215402. https://doi.org/10.1088/0957-4484/27/21/215402

Guo K, Wang X, Zhang R et al (2021) Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices. Light Sci Appl 10:201. https://doi.org/10.1038/s41377-021-00644-0

Zhang G, Liu F, Gu T, Zhao Y, Li N, Yang W, Feng S (2017) Enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition. Adv Electron Mater 3:1600498. https://doi.org/10.1002/aelm.201600498

Wu Z, Zhang Y, Ma K et al (2014) Strong visible-light photovoltaic effect in multiferroic Pb(Fe1/2V1/2)O3 bulk ceramics. Phys Status Solidi RRL 8:36–39. https://doi.org/10.1002/pssr.201308259

Berenov A, Petrov P, Moffat B et al (2021) Pyroelectric and photovoltaic properties of Nb-doped PZT thin films. APL Mater 9:041108. https://doi.org/10.1063/5.0039593

Young SM, Zheng F, Rappe AM (2013) Prediction of a linear spin bulk photovoltaic effect in antiferromagnets. Phys Rev Lett 110:057201. https://doi.org/10.1103/PhysRevLett.110.057201

Wang J, Lu H, Pan X et al (2021) Spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral two-dimensional hybrid organic–inorganic perovskites. ACS Nano 15:588–595. https://doi.org/10.1021/acsnano.0c05980