Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adelman, 2012, Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans, Nat. Rev. Genet., 13, 720, 10.1038/nrg3293
Becker, 2002, ATP-dependent nucleosome remodeling, Annu. Rev. Biochem., 71, 247, 10.1146/annurev.biochem.71.110601.135400
Berger, 2001, Leukodystrophies: recent developments in genetics, molecular biology, pathogenesis and treatment, Curr. Opin. Neurol., 14, 305, 10.1097/00019052-200106000-00007
Chan, 2004, NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes, Neuron, 43, 183, 10.1016/j.neuron.2004.06.024
Chang, 2002, Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis, N. Engl. J. Med., 346, 165, 10.1056/NEJMoa010994
Chen, 2007, Isolation and culture of rat and mouse oligodendrocyte precursor cells, Nat. Protoc., 2, 1044, 10.1038/nprot.2007.149
Creyghton, 2010, Histone H3K27ac separates active from poised enhancers and predicts developmental state, Proc. Natl. Acad. Sci. USA, 107, 21931, 10.1073/pnas.1016071107
Dugas, 2006, Functional genomic analysis of oligodendrocyte differentiation, J. Neurosci., 26, 10967, 10.1523/JNEUROSCI.2572-06.2006
Dugas, 2010, Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination, Neuron, 65, 597, 10.1016/j.neuron.2010.01.027
Emery, 2010, Regulation of oligodendrocyte differentiation and myelination, Science, 330, 779, 10.1126/science.1190927
Emery, 2009, Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination, Cell, 138, 172, 10.1016/j.cell.2009.04.031
Euskirchen, 2011, Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches, PLoS Genet., 7, e1002008, 10.1371/journal.pgen.1002008
Flavell, 2008, Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection, Neuron, 60, 1022, 10.1016/j.neuron.2008.11.029
Franklin, 2008, Remyelination in the CNS: from biology to therapy, Nat. Rev. Neurosci., 9, 839, 10.1038/nrn2480
Haberland, 2009, The many roles of histone deacetylases in development and physiology: implications for disease and therapy, Nat. Rev. Genet., 10, 32, 10.1038/nrg2485
Hah, 2011, A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells, Cell, 145, 622, 10.1016/j.cell.2011.03.042
Ho, 2009, An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network, Proc. Natl. Acad. Sci. USA, 106, 5187, 10.1073/pnas.0812888106
Kim, 2010, Widespread transcription at neuronal activity-regulated enhancers, Nature, 465, 182, 10.1038/nature09033
Küspert, 2011, Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer, Nucleic Acids Res., 39, 1280, 10.1093/nar/gkq951
Lessard, 2007, An essential switch in subunit composition of a chromatin remodeling complex during neural development, Neuron, 55, 201, 10.1016/j.neuron.2007.06.019
Li, 2009, Two-tier transcriptional control of oligodendrocyte differentiation, Curr. Opin. Neurobiol., 19, 479, 10.1016/j.conb.2009.08.004
Li, 2011, Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch, Neuron, 69, 918, 10.1016/j.neuron.2011.01.030
Liu, 2007, Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms, Dev. Biol., 302, 683, 10.1016/j.ydbio.2006.10.007
Lu, 2002, Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection, Cell, 109, 75, 10.1016/S0092-8674(02)00678-5
Martin, 2005, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol., 6, 838, 10.1038/nrm1761
Mazzoni, 2011, Embryonic stem cell-based mapping of developmental transcriptional programs, Nat. Methods, 8, 1056, 10.1038/nmeth.1775
Min, 2011, Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells, Genes Dev., 25, 742, 10.1101/gad.2005511
Nielsen, 2002, Nuclear organization in differentiating oligodendrocytes, J. Cell Sci., 115, 4071, 10.1242/jcs.00103
Peterson, 1994, Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement, Proc. Natl. Acad. Sci. USA, 91, 2905, 10.1073/pnas.91.8.2905
Pfeiffer, 1993, The oligodendrocyte and its many cellular processes, Trends Cell Biol., 3, 191, 10.1016/0962-8924(93)90213-K
Rada-Iglesias, 2011, A unique chromatin signature uncovers early developmental enhancers in humans, Nature, 470, 279, 10.1038/nature09692
Sumi-Ichinose, 1997, SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells, Mol. Cell. Biol., 17, 5976, 10.1128/MCB.17.10.5976
Takano, 2008, EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization, EMBO J., 27, 2817, 10.1038/emboj.2008.216
Thurnherr, 2006, Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS, J. Neurosci., 26, 10110, 10.1523/JNEUROSCI.2158-06.2006
Trapp, 1998, Axonal transection in the lesions of multiple sclerosis, N. Engl. J. Med., 338, 278, 10.1056/NEJM199801293380502
Weider, 2012, Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination, Dev. Cell, 23, 193, 10.1016/j.devcel.2012.05.017
Weng, 2012, Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system, Neuron, 73, 713, 10.1016/j.neuron.2011.12.021
Wu, 2007, Regulation of dendritic development by neuron-specific chromatin remodeling complexes, Neuron, 56, 94, 10.1016/j.neuron.2007.08.021
Wu, 2009, Understanding the words of chromatin regulation, Cell, 136, 200, 10.1016/j.cell.2009.01.009
Xin, 2005, Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice, J. Neurosci., 25, 1354, 10.1523/JNEUROSCI.3034-04.2005
Ye, 2009, HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction, Nat. Neurosci., 12, 829, 10.1038/nn.2333
Yoo, 2009, ATP-dependent chromatin remodeling in neural development, Curr. Opin. Neurobiol., 19, 120, 10.1016/j.conb.2009.04.006
Yue, 2006, A critical role for dorsal progenitors in cortical myelination, J. Neurosci., 26, 1275, 10.1523/JNEUROSCI.4717-05.2006
Zhao, 2010, MicroRNA-mediated control of oligodendrocyte differentiation, Neuron, 65, 612, 10.1016/j.neuron.2010.02.018
Zhou, 1998, AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing, J. Cell Biol., 143, 1295, 10.1083/jcb.143.5.1295
Zhou, 2002, The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification, Cell, 109, 61, 10.1016/S0092-8674(02)00677-3
Zhu, 2012, Olig2-dependent developmental fate switch of NG2 cells, Development, 139, 2299, 10.1242/dev.078873
Chan, J.R., Watkins, T.A., Cosgaya, J.M., Zhang, C., Chen, L., Reichardt, L.F., Shooter, E.M., and Barres, B.A. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43, 183–191.
Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E.C., Tallquist, M., Li, J., and Lu, Q.R. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat. Protoc. 2, 1044–1051.
Emery, B., Agalliu, D., Cahoy, J.D., Watkins, T.A., Dugas, J.C., Mulinyawe, S.B., Ibrahim, A., Ligon, K.L., Rowitch, D.H., and Barres, B.A. (2009). Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172–185.
Flavell, S.W., Kim, T.K., Gray, J.M., Harmin, D.A., Hemberg, M., Hong, E.J., Markenscoff-Papadimitriou, E., Bear, D.M., and Greenberg, M.E. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038.
Hah, N., Danko, C.G., Core, L., Waterfall, J.J., Siepel, A., Lis, J.T., and Kraus, W.L. (2011). A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145, 622–634.
Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187.
Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., and Rowitch, D.H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86.
Min, I.M., Waterfall, J.J., Core, L.J., Munroe, R.J., Schimenti, J., and Lis, J.T. (2011). Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev. 25, 742–754.
Weng, Q., Chen, Y., Wang, H., Xu, X., Yang, B., He, Q., Shou, W., Chen, Y., Higashi, Y., van den Berghe, V., et al. (2012). Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 73, 713–728.
Xin, M., Yue, T., Ma, Z., Wu, F.F., Gow, A., and Lu, Q.R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354–1365.