Spatiotemporal modeling of dengue fever risk in Puerto Rico

Spatial and Spatio-temporal Epidemiology - Tập 35 - Trang 100375 - 2020
Gavino Puggioni1, Jannelle Couret2, Emily Serman3, Ali S. Akanda3, Howard S. Ginsberg4
1Department of Computer Science and Statistics, University of Rhode Island, Rhode Island, United States
2Department of Biological Sciences, University of Rhode Island, Rhode Island, United States
3Department of Civil and Environmental Engineering, University of Rhode Island, Rhode Island, United States
4U.S. Geological Survey, Patuxent Wildlife Research Center, Rhode Island Field Station, University of Rhode Island, Rhode Island, United States

Tài liệu tham khảo

Bakar, 2015, Sptimer: spatio-temporal bayesian modeling using r, J. Stat. Softw. Artic., 63, 1 Barrera, 2011, Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in san juan, puerto rico, PLoS Negl. Trop. Dis., 5, e1378, 10.1371/journal.pntd.0001378 Bernardinelli, 1995, Bayesian analysis of space-time variation in disease risk, Stat. Med, 14, 2433, 10.1002/sim.4780142112 Bhatt, 2013, The global distribution and burden of dengue, Nature, 1 Brunkard, 2007, Assessing the roles of temperature, precipitation, and enso in dengue re-emergence on the texas-mexico border region., Salud pública de México, 50, 227 Cabrera, 2018, Modelling spatio-temporal data of dengue fever using generalized additive mixed models, Spat Spatiotemporal Epidemiol., 28, 1, 10.1016/j.sste.2018.11.006 Campbell, 2015, Climate change influences on global distributions of dengue and chikungunya virus vectors, Philos. Trans. B, 370, 20140135, 10.1098/rstb.2014.0135 Cazelles, 2005, Nonstationary influence of el niño on the synchronous dengue epidemics in thailand, PLoS Med., 2, e106, 10.1371/journal.pmed.0020106 Chan, 2012, The incubation periods of dengue viruses, PLoS ONE, 7, e50972, 10.1371/journal.pone.0050972 Cheong, 2014, Assessment of land use factors associated with dengue cases in malaysia using boosted regression trees, Spat. Spatiotemporal Epidemiol., 10, 75, 10.1016/j.sste.2014.05.002 Couret, 2014, Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (diptera: culicidae), PLoS ONE, 9, 10.1371/journal.pone.0087468 Duncan, 2018, Spatio-temporal areal unit modeling in r with conditional autoregressive priors using the carbayesst package, J. Stat. Softw. Artic., 84, 1 Eisen, 2009, Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue, PLoS Negl. Trop. Dis., 3, 1935, 10.1371/journal.pntd.0000411 Gharbi, 2011, Time series analysis of dengue incidence in guadeloupe, french west indies: forecasting models using climate variables as predictors., BMC Infect. Dis., 11, 166, 10.1186/1471-2334-11-166 Glantz, 2001 Hii, 2009, Climate variability and increase in intensity and magnitute of dengue incidence in singapore., Glob. Health Action, 11, 2036, 10.3402/gha.v2i0.2036 Hii, 2012, Forecast of dengue incidence using temperature and rainfall, PLoS Negl. Trop. Dis., 6, e1908, 10.1371/journal.pntd.0001908 Jeefoo, 2011, Spatio-temporal diffusion pattern and hotspot detection of dengue in chachoengsao province, thailand, Int. J. Environ. Res. Public Health, 8, 51, 10.3390/ijerph8010051 Johansson, 2009, Multiyear climate variability and dengue—el niño southern oscillation, weather, and dengue incidence in puerto rico, mexico, and thailand: a longitudinal data analysis, PLoS Med., 6, e1000168, 10.1371/journal.pmed.1000168 Johansson, 2009, Local and global effects of climate on dengue transmission in puerto rico, PLoS Negl. Trop. Dis., 3, e382, 10.1371/journal.pntd.0000382 Leroux, 1999 Li, 2018, Climate change and dengue fever transmission in china: evidences and challenges, Sci. Total Environ., 622–623, 493, 10.1016/j.scitotenv.2017.11.326 Liu-Helmersson, 2014, Vectorial capacity of aedes aegypti: effects of temperature and implications for global dengue epidemic potential., PLoS ONE, 9, e89783, 10.1371/journal.pone.0089783 Lowe, 2011, Spatio-temporal modelling of climate-sensitive disease risk towards an early warning system for dengue in brazil, Comput. Geosci., 37, 371, 10.1016/j.cageo.2010.01.008 Lowe, 2017, Climate services for health: predicting the evolution of the 2016 dengue season in machala, ecuador, Lancet Planet. Health, 1, e142, 10.1016/S2542-5196(17)30064-5 Lu, 2009, Time series analysis of dengue fever and weather in guangzhou, china, BMC Public Health, 9, 10.1186/1471-2458-9-395 Moore, 1978, Aedes aegypti in puerto rico: environmental determinants of larval abundance and relation to dengue virus transmission, Am. Soc. Trop. Med.Hyg., 27, 1225, 10.4269/ajtmh.1978.27.1225 Morin, 2015, Meteorologically driven simulations of dengue epidemics in san juan, pr, PLoS Negl. Trop. Dis., 9, e0004002, 10.1371/journal.pntd.0004002 Musso, 2015, Zika virus: following a path of dengue and chikungunya, Lancet, 386, 243, 10.1016/S0140-6736(15)61273-9 Myers, 2000, Forecasting disease risk for increased epidemic preparedness in public health, Adv. Parasitol., 47, 309, 10.1016/S0065-308X(00)47013-2 Racloz, 2012, Surveillance of dengue fever virus: a review of epidemiological models and early warning systems, PLoS Negl. Trop. Dis., 6, e1648, 10.1371/journal.pntd.0001648 Rigau-Perez, 2001, Dengue activity in puerto rico during an interepidemic period (1995–1997), Am. J. Trop. Med. Hyg., 64, 75, 10.4269/ajtmh.2001.64.75 Rushworth, 2014, A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in greater london, Spat Spatiotemporal Epidemiol., 10, 29, 10.1016/j.sste.2014.05.001 Rushworth, 2017, An adaptive spatio-temporal smoothing model for estimating trends and step changes in disease risk, J. R. Stat. Soc, 66.1, 141, 10.1111/rssc.12155 Sahu, 2012, Hierarchical bayesian autoregressive models for large space time data with applications to ozone concentration, Appl. Stoch. Models Bus. Ind., 28, 395, 10.1002/asmb.1951 Sahu, 2007, High-resolution space-time ozone modelling for assessing trends, J. Am. Stat. Assoc., 102, 1221, 10.1198/016214507000000031 Shen, 2015, The impacts of mosquito density and meteorological factors on dengue fever epidemics in guangzhou, china, 2006–2014: a time-series analysis, Biomed. Environ. Sci., 28, 321 Stanaway, 2016, The global burden of dengue: an analysis from the global burden of disease study 2013, Lancet Infect. Dis., 16, 712, 10.1016/S1473-3099(16)00026-8 Stoddard, 2014, Long-term and seasonal dynamics of dengue in iquitos, peru, PLoS Negl. Trop. Dis., 8, e3003, 10.1371/journal.pntd.0003003 Wu, 2007, Weather as an effective predictor for occurrence of dengue fever in taiwan, Acta Trop., 103, 50, 10.1016/j.actatropica.2007.05.014 Xu, 2017, Climate variation drives dengue dynamics., Proc. Natl. Acad. Sci., 114, 113, 10.1073/pnas.1618558114 Yosuno, 1970, A study of biting habits of Aedes aegypti in bangkok, thailand., Bull. World Health Organ., 43, 319 Yu, 2010, A spatio-temporal climate-based model of early dengue fever warning in southern taiwan, Stoch. Environm. Res. Risk Assess., 25, 485, 10.1007/s00477-010-0417-9