Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus

Microbial Pathogenesis - Tập 149 - Trang 104286 - 2020
Karuppiah Vijayakumar1, Veeraiyan Bharathidasan1, Vajravelu Manigandan1, Danaraj Jeyapragash1
1Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India

Tài liệu tham khảo

Khatoon, 2018, Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention, Heliyon, 4, 10.1016/j.heliyon.2018.e01067 Sethupathy, 2017, 6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans, RSC Adv., 7, 23392, 10.1039/C7RA02934A Flemming, 2007, The EPS matrix: the “house of biofilm cells”, J. Bacteriol., 189, 7945, 10.1128/JB.00858-07 Høiby, 2010, Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents, 35, 322, 10.1016/j.ijantimicag.2009.12.011 Stewart, 2001, Antibiotic resistance of bacteria in biofilms, Lancet, 358, 135, 10.1016/S0140-6736(01)05321-1 Van Acker, 2014, Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms, Trends Microbiol., 22, 326, 10.1016/j.tim.2014.02.001 Tong, 2015, Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management, Clin. Microbiol. Rev., 28, 603, 10.1128/CMR.00134-14 Spagnolo, 2014, Staphylococcus aureus with reduced susceptibility to vancomycin in healthcare settings, J. Prev. Med. Hyg., 55, 137 Lister, 2014, Staphylococcus aureus biofilms: recent developments in biofilm dispersal, Front. Cell Infect Microbiol., 4, 178, 10.3389/fcimb.2014.00178 Bien, 2011, Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response, J. Pathog., 2011, 1, 10.4061/2011/601905 Al-Mebairik, 2016, A review of virulence factors, pathogenesis, and antibiotic resistance in Staphylococcus aureus, Rev. Med. Microbiol., 27, 50, 10.1097/MRM.0000000000000067 Dinges, 2000, Exotoxins of Staphylococcus aureus, Clin. Microbiol. Rev., 13, 16, 10.1128/CMR.13.1.16 Bronner, 2004, Regulation of virulence determinants in Staphylococcus aureus: complexity and applications, FEMS Microbiol. Rev., 28, 183, 10.1016/j.femsre.2003.09.003 Arya, 2015, SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections, Front. Microbiol., 6, 416, 10.3389/fmicb.2015.00416 Lee, 2016, Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus, Sci. Rep., 6, 19267, 10.1038/srep19267 Phuong, 2017, Antibiofilm activity of α-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus, Asian Pac. J. Trop Med., 10, 1154, 10.1016/j.apjtm.2017.10.022 Rubini, 2018, Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus, Microb. Pathog., 122, 162, 10.1016/j.micpath.2018.06.028 Wang, 2017, Quebrachitol: global status and basic research, Nat. Prod. Bioprospect., 7, 113, 10.1007/s13659-017-0120-3 Chung, 1997, Dereplication of saccharide and polyol constituents of candidate sweet‐tasting plants: isolation of the sesquiterpene glycoside mukurozioside IIb as a sweet principle of Sapindus rarak, Phytochem. Anal., 8, 49, 10.1002/(SICI)1099-1565(199703)8:2<49::AID-PCA339>3.0.CO;2-C Díaz, 2008, First record of L-quebrachitol in Allophylus edulis (sapindaceae), Carbohydr. Res., 343, 2699, 10.1016/j.carres.2008.07.014 Chida, 1992, Formal total syntheses of (–)-isoavenaciolide and (–)-ethisolide from L-quebrachitol, J. Chem. Soc. Perkin Trans., 1, 2667, 10.1039/P19920002667 Barton, 1995, Total synthesis of (–)-ovalicin and analogues from L-quebrachitol, J. Chem. Soc. Perkin Trans., 1, 1551, 10.1039/P19950001551 Chida, 1994, Stereoselective conversion of L-quebrachitol into a novel hydroxylated caprolactam: total synthesis of bengamide B, Heterocycles, 38, 2383, 10.3987/COM-94-6869 Vijayakumar, 2018, Antiquorum sensing and biofilm potential of 5-Hydroxymethylfurfural against Gram positive pathogens, Microb. Pathog., 125, 48, 10.1016/j.micpath.2018.09.008 Clinical and Laboratory Standards Institute, 2006 Limsuwan, 2008, Boesenbergia pandurata (Roxb.) schltr., Eleutherine americana merr. And Rhodomyrtus tomentosa (Aiton) hassk. As antibiofilm producing and antiquorum sensing in Streptococcus pyogenes, FEMS Immunol. Med. Microbiol., 53, 429, 10.1111/j.1574-695X.2008.00445.x Mattos-Guaraldi, 1999, Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods, Curr. Microbiol., 37, 10.1007/PL00006769 Karuppiah, 2018, Anti-biofilm and quorum sensing inhibitory potential of Acanthus ilicifolius against uropathogens, LS: Int. J. Life Sciences., 7, 65 Karuppiah, 2017, Antibiofilm and quorum sensing inhibitory potential of Excoecaria agallocha against Pseudomonas aeruginosa, Int. J. Sci. Invent. Today., 6, 758 Subramenium, 2015, Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors, J. Med. Microbiol., 64, 879, 10.1099/jmm.0.000105 Nithya, 2010, Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1, Appl. Microbial. Biotechnol., 88, 341, 10.1007/s00253-010-2777-y Cerca, 2005, Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis, Res. Microbiol., 156, 506, 10.1016/j.resmic.2005.01.007 Arrecubieta, 2007, SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen, J. Biol. Chem., 282, 18767, 10.1074/jbc.M610940200 Charville, 2008, Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release, Biomaterials, 29, 4039, 10.1016/j.biomaterials.2008.07.005 Cue, 2015, SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman, PloS One, 10, 10.1371/journal.pone.0123027 Sorroche, 2012, A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina, Appl, Environ. Microbiol., 78, 4092, 10.1128/AEM.07826-11 Hollands, 2008, A naturally occurring mutation in ropB suppresses SpeB expression and reduces M1T1 group A streptococcal systemic virulence, PloS One, 3, 10.1371/journal.pone.0004102 Lan, 2010, Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus, J. Bacteriol., 192, 3068, 10.1128/JB.00928-09 Tatsuno, 2014, Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes, BMC Res. Notes, 7, 189, 10.1186/1756-0500-7-189 Valliammai, 2019, 5-Dodecanolide interferes with biofilm formation and reduces the virulence of Methicillin-resistant Staphylococcus aureus (MRSA) through up regulation of agr system, Sci. Rep., 9, 1, 10.1038/s41598-019-50207-y Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method, Methods, 25, 402, 10.1006/meth.2001.1262 McCann, 2008, Staphylococcus epidermidis device‐related infections: pathogenesis and clinical management, J. Pharm. Pharmacol., 60, 1551, 10.1211/jpp/60.12.0001 Li, 2018, Bacteria antibiotic resistance: new challenges and opportunities for implant‐associated orthopedic infections, J. Orthop. Res., 36, 22, 10.1002/jor.23656 Gotman, 1997, Characteristics of metals used in implants, J. Endourol., 11, 383, 10.1089/end.1997.11.383 Foster, 2014, Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus, Nat. Rev. Microbiol., 12, 49, 10.1038/nrmicro3161 Fey, 2010, Current concepts in biofilm formation of Staphylococcus epidermidis, Future Microbiol., 5, 917, 10.2217/fmb.10.56 Sugimoto, 2018, Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and-sensitive strains of Staphylococcus aureus, Sci. Rep., 8, 1, 10.1038/s41598-018-20485-z Houston, 2011, Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype, Infect. Immun., 79, 1153, 10.1128/IAI.00364-10 Cadieux, 2014, Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids, J. Bacteriol., 196, 4044, 10.1128/JB.02044-14 Berube, 2013, Staphylococcus aureus α-toxin: nearly a century of intrigue, Toxins, 5, 1140, 10.3390/toxins5061140 Chua, 2014, Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus, BMC Microbiol., 14, 31, 10.1186/1471-2180-14-31 Clauditz, 2006, Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress, Infect. Immun., 74, 4950, 10.1128/IAI.00204-06 Hall, 2017, The Staphylococcus aureus AirSR two-component system mediates reactive oxygen species resistance via transcriptional regulation of staphyloxanthin production, Infect. Immun., 85, 10.1128/IAI.00838-16 Leejae, 2013, Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate, J. Med. Microbiol., 62, 421, 10.1099/jmm.0.047316-0 Paharik, 2016, The staphylococcal biofilm: adhesins, regulation, and host response, Microbiol. Spectr., 4, 529, 10.1128/microbiolspec.VMBF-0022-2015 Dunman, 2001, Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci, J. Bacteriol., 183, 7341, 10.1128/JB.183.24.7341-7353.2001 Cheung, 2004, Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus, FEMS Immunol. Med. Microbiol., 40, 1, 10.1016/S0928-8244(03)00309-2 Queck, 2008, RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus, Mol. Cell., 32, 150, 10.1016/j.molcel.2008.08.005 Loewen, 1994, The role of the sigma factor σS (KatF) in bacterial global regulation, Annu. Rev. Microbiol., 48, 53, 10.1146/annurev.mi.48.100194.000413 Kullik, 1998, Deletion of the alternative sigma factor ςB in Staphylococcus aureus reveals its function as a global regulator of virulence genes, J. Bacteriol., 180, 4814, 10.1128/JB.180.18.4814-4820.1998 Cramton, 1999, The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation, Infect. Immun., 67, 5427, 10.1128/IAI.67.10.5427-5433.1999 Cue, 2012, Genetic regulation of the intercellular adhesion locus in staphylococci, Front. Cell. Infect. Microbiol., 2, 38, 10.3389/fcimb.2012.00038 Pelz, 2005, Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus, J. Biol. Chem., 280, 32493, 10.1074/jbc.M505070200